Evaluación del contenido de metales y metaloides en pavimentos permeables y sus proximidades

  1. Lekuona-Orkaizagirre, Ainhoa 1
  2. Meaurio, Maite 1
  3. Gredilla, Ainara 1
  4. Madrazo-Uribeetxebarria, Eneko 1
  5. Carrero, Jose Antonio 1
  6. Garmendia-Antín, Maddi 1
  1. 1 Universidad del País Vasco UPV/EHU
Journal:
Ingeniería del agua

ISSN: 1134-2196

Year of publication: 2024

Volume: 28

Issue: 2

Pages: 82-92

Type: Article

DOI: 10.4995/IA.2024.21068 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Ingeniería del agua

Abstract

In this work, the content of some metals and metalloids in an area with permeable pavements has been determined. First, urban sediment samples from the permeable and impermeable zones have been analysed and the influence that the antecedent dry period has on the accumulation of metals has been observed. Then, the content of metals in the permeable material has been analysed and finally, urban runoff has been compared with the runoff that has passed through permeable pavements. Sediment results show that temporal variable is not significant for most metals and metalloids; however, differences have been observed between the sediments of permeable and impermeable pavement. Regarding water samples, permeable pavements have provided benefits in the physicochemical properties, especially in the reduction of turbidity and thus, of suspended solids (TSS). In dissolved metals, a decreasing trend have been observed for some metals and metalloids, but not for all. It could be considered to compare several samplings after rainfalls of different intensity to obtain more information about the influence of permeable pavements on the quality of urban runoff.

Funding information

Bibliographic References

  • Alloway, B.J. (Ed.). 2013. Heavy Metals in Soils. Trace Metals and Metalloids in Soils and their Bioavailability. (Vol. 22). Springer Netherlands. https://doi.org/10.1007/978-94-007-4470-7
  • Bertrand-Krajewski, J.L., Chebbo, G., Saget, A. 1998. Distribution of pollutant mass vs volume in stormwater discharges and the first flush phenomenon. Water Research, 32(8), 2341–2356. https://doi.org/10.1016/S0043-1354(97)00420-X
  • CIRIA. 2015. The SuDS Manual C753. www.ciria.org
  • Davis, A.P., Shokouhian, M., Ni, S. 2001. Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere, 44(5), 997–1009. https://doi.org/10.1016/S0045-6535(00)00561-0
  • Drake, J.A.P., Bradford, A., Marsalek, J. 2013. Review of environmental performance of permeable pavement systems: state of the knowledge. Water Quality Research Journal, 48(3), 203–222. https://doi.org/10.2166/wqrjc.2013.055
  • Eriksson, E., Baun, A., Scholes, L., Ledin, A., Ahlman, S., Revitt, M., Noutsopoulos, C., Mikkelsen, P. S. 2007. Selected stormwater priority pollutants - a European perspective. Science of the Total Environment, 383(1–3), 41–51. https://doi.org/10.1016/J.SCITOTENV.2007.05.028
  • Gaberšek, M., Gosar, M. 2018. Geochemistry of urban soil in the industrial town of Maribor, Slovenia. Journal of Geochemical Exploration, 187, 141–154. https://doi.org/10.1016/J.GEXPLO.2017.06.001
  • Garmendia, M., Fdez-Ortiz de Vallejuelo, S., Liñero, O., Gredilla, A., Arana, G., Soto, M., de Diego, A. 2019. Long term monitoring of metal pollution in sediments as a tool to investigate the effects of engineering works in estuaries. A case study, the Nerbioi-Ibaizabal estuary (Bilbao, Basque Country). Marine Pollution Bulletin, 145, 555–563. https://doi.org/10.1016/J.MARPOLBUL.2019.06.051
  • Humphrey, J., Rowett, C., Tyers, J., Gregson, M., Comber, S. 2021. Are sustainable drainage systems (SuDS) effective at retaining dissolved trace elements? Environmental Technology (United Kingdom), 1450–1463. https://doi.org/10.1080/09593330.2021.2004454
  • Kamali, M., Delkash, M., Tajrishy, M. 2017. Evaluation of permeable pavement responses to urban surface runoff. Journal of Environmental Management, 187, 43–53. https://doi.org/10.1016/J.JENVMAN.2016.11.027
  • Madrazo Uribeetxebarria, E., Garmendia Antín, M., Meaurio Arrate, M. 2022. Zoladura iragazkorrak hirietako drainatze sarean txertaturiko elementu gisa. EKAIA EHUko Zientzia Eta Teknologia Aldizkaria. https://doi.org/10.1387/EKAIA.23083
  • Rymszewicz, A., Bruen, M., O’sullivan, J. J., Turner, J. N., Lawler, D. M., Harrington, J. R., Conroy, E., Kelly-Quinn, M. 2017. Modelling spatial and temporal variations of annual suspended sediment yields from small agricultural catchments. https://doi.org/10.1016/j.scitotenv.2017.10.134
  • U.S. EPA. 2007. Method 3051A (SW-846): Microwave Assisted Acid Digestion of Sediments, Sludges, and Oils, Revision 1. Washington, DC. https://www.epa.gov/esam/us-epa-method-3051a-microwave-assisted-acid-digestion-sediments-sludges-and-oils
  • Yang, J. L., Zhang, G. L. 2015. Formation, characteristics and eco-environmental implications of urban soils – A review. Soil Science and Plant Nutrition, 61(Supl. 1), 30–46. https://doi.org/10.1080/00380768.2015.1035622
  • Zhang, J., Hua, P., Krebs, P. 2017. Influences of land use and antecedent dry-weather period on pollution level and ecological risk of heavy metals in road-deposited sediment. Environmental Pollution (Barking, Essex: 1987), 228, 158–168. https://doi.org/10.1016/J.ENVPOL.2017.05.029