Synthesis of Lignin Nanoparticles and Hydrogels

  1. Ruiz-Rubio, L. 12
  2. Vilas Vilela, J. L. 12
  1. 1 Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology University of the Basque Country 48940 Leioa Spain leire.ruiz@ehu.eus
  2. 2 BCMaterials, Basque Center for Materials, Applications and Nanostructures UPV/EHU Science Park 48940 Leioa Spain
Libro:
Lignin-based Materials

ISBN: 9781839165351 9781839165351

Año de publicación: 2023

Páginas: 11-37

Tipo: Capítulo de Libro

DOI: 10.1039/BK9781839167843-00011 GOOGLE SCHOLAR lock_openAcceso abierto editor

Referencias bibliográficas

  • Boerjan, (2003), Annu. Rev. Plant Biol., 54, pp. 519, 10.1146/annurev.arplant.54.031902.134938
  • Upton, (2016), Chem. Rev., 116, pp. 2275, 10.1021/acs.chemrev.5b00345
  • Calvo-Flores, (2010), ChemSusChem, 3, pp. 1227, 10.1002/cssc.201000157
  • Schneider, (2021), Biotechnol. Adv., 47, pp. 107685, 10.1016/j.biotechadv.2020.107685
  • Dorrestijn, (2000), J. Anal. Appl. Pyrolysis, 54, pp. 153, 10.1016/S0165-2370(99)00082-0
  • Jiang, (2010), Thermochim. Acta, 498, pp. 61, 10.1016/j.tca.2009.10.003
  • Hu, (2018), Bioresour. Technol., 247, pp. 1181, 10.1016/j.biortech.2017.08.169
  • Komissarenkov, (2012), Russ. J. Gen. Chem., 82, pp. 985, 10.1134/S1070363212050325
  • Aro, (2017), ChemSusChem, 10, pp. 1861, 10.1002/cssc.201700082
  • Calvo-Flores, (2010), ChemSusChem, 3, pp. 1227, 10.1002/cssc.201000157
  • Sugiarto, (2022), Bioact. Mater., 8, pp. 71, 10.1016/j.bioactmat.2021.06.023
  • Chen, (2022), Green Chem., 24, pp. 565, 10.1039/D1GC02872C
  • (2020), Biomaterials Science
  • Hoffman, (2002), Adv. Drug Delivery Rev., 54, pp. 3, 10.1016/S0169-409X(01)00239-3
  • Mishra, (1995), J. Appl. Polym. Sci., 58, pp. 331, 10.1002/app.1995.070580213
  • (2003), Polymer Blends Handbook
  • Raschip, (2007), High Perform. Polym., 19, pp. 603, 10.1177/0954008307081202
  • Raschip, (2011), High Perform. Polym., 23, pp. 219, 10.1177/0954008311399112
  • Peñaranda, (2010), Polym. Bull., 65, pp. 495, 10.1007/s00289-010-0264-3
  • Oveissi, (2018), ACS Appl. Bio Mater., 1, pp. 2073, 10.1021/acsabm.8b00546
  • Jiang, (2018), Polymers, 10, pp. 1109, 10.3390/polym10101109
  • Huang, (2019), Carbohydr. Polym., 223, pp. 115080, 10.1016/j.carbpol.2019.115080
  • Ravishankar, (2019), Mater. Sci. Eng., C, 102, pp. 447, 10.1016/j.msec.2019.04.038
  • Zhang, (2019), Mater. Sci. Eng., C, 104, pp. 110002, 10.1016/j.msec.2019.110002
  • Chen, (2011), BioResources, 6, pp. 1262
  • Grishechko, (2013), Microporous Mesoporous Mater., 168, pp. 19, 10.1016/j.micromeso.2012.09.024
  • Chen, (2010), Adv. Mater. Res., 113–116, pp. 1837, 10.4028/www.scientific.net/AMR.113-116.1837
  • Ciolacu, (2012), Mater. Sci. Eng., C, 32, pp. 452, 10.1016/j.msec.2011.11.018
  • Dai, (2019), Green Chem., 21, pp. 5222, 10.1039/C9GC01975H
  • Raschip, (2013), Int. J. Biol. Macromol., 54, pp. 230, 10.1016/j.ijbiomac.2012.12.036
  • Sathawong, (2018), J. Environ. Chem. Eng., 6, pp. 5879, 10.1016/j.jece.2018.05.008
  • Wu, (2019), Int. J. Biol. Macromol., 140, pp. 538, 10.1016/j.ijbiomac.2019.08.142
  • Cortés-Triviño, (2018), Polymers, 10, pp. 670, 10.3390/polym10060670
  • Passauer, (2012), ACS Appl. Mater. Interfaces, 4, pp. 5852, 10.1021/am3015179
  • Domínguez-Robles, (2018), Int. J. Biol. Macromol., 115, pp. 1249, 10.1016/j.ijbiomac.2018.04.044
  • Larrañeta, (2018), ACS Sustainable Chem. Eng., 6, pp. 9037, 10.1021/acssuschemeng.8b01371
  • Meng, (2019), Int. J. Biol. Macromol., 135, pp. 1006, 10.1016/j.ijbiomac.2019.05.198
  • Wang, (2016), RSC Adv., 6, pp. 35550, 10.1039/C6RA03398A
  • Zerpa, (2018), ACS Omega, 3, pp. 8233, 10.1021/acsomega.8b01176
  • Bangalore Ashok, (2018), Green Chem., 20, pp. 4911, 10.1039/C8GC02805B
  • Abbati de Assis, (2018), ACS Sustainable Chem. Eng., 6, pp. 11853, 10.1021/acssuschemeng.8b02151
  • Rahman, (2018), New J. Chem., 42, pp. 3415, 10.1039/C7NJ04103A
  • Frangville, (2012), ChemPhysChem, 13, pp. 4235, 10.1002/cphc.201200537
  • Figueiredo, (2021), ChemSusChem, 14, pp. 4718, 10.1002/cssc.202101356
  • Yang, (2018), ACS Sustainable Chem. Eng., 6, pp. 3502, 10.1021/acssuschemeng.7b03782
  • Pang, (2017), J. Agric. Food Chem., 65, pp. 11011, 10.1021/acs.jafc.7b03784
  • Gupta, (2015), Mater. Focus, 3, pp. 444, 10.1166/mat.2014.1217
  • He, (2019), Int. J. Biol. Macromol., 127, pp. 665, 10.1016/j.ijbiomac.2019.01.202
  • Yang, (2019), Nanoscale Adv., 1, pp. 299, 10.1039/C8NA00042E
  • Gupta, (2015), RSC Adv., 5, pp. 56028, 10.1039/C5RA07828H
  • Richter, (2016), Langmuir, 32, pp. 6468, 10.1021/acs.langmuir.6b01088
  • Richter, (2015), Nat. Nanotechnol., 10, pp. 817, 10.1038/nnano.2015.141
  • Lievonen, (2016), Green Chem., 18, pp. 1416, 10.1039/C5GC01436K
  • Tian, (2017), ACS Sustainable Chem. Eng., 5, pp. 2702, 10.1021/acssuschemeng.6b03043
  • Sipponen, (2018), Nat. Commun., 9, pp. 2300, 10.1038/s41467-018-04715-6
  • Wang, (2019), ACS Sustainable Chem. Eng., 7, pp. 2658, 10.1021/acssuschemeng.8b05735
  • Zikeli, (2019), Nanomaterials, 9, pp. 281, 10.3390/nano9020281
  • Qian, (2014), Green Chem., 16, pp. 2156, 10.1039/c3gc42131g
  • Freitas, (2020), Int. J. Biol. Macromol., 163, pp. 1798, 10.1016/j.ijbiomac.2020.09.110
  • Beisl, (2017), Int. J. Mol. Sci., 18, pp. 1244, 10.3390/ijms18061244
  • Zhang, (2021), Nanomaterials, 11, pp. 1336, 10.3390/nano11051336
  • Myint, (2016), Green Chem., 18, pp. 2129, 10.1039/C5GC02398J
  • Lu, (2012), Food Chem., 135, pp. 63, 10.1016/j.foodchem.2012.04.070
  • Lam, (2014), Curr. Opin. Colloid Interface Sci., 19, pp. 490, 10.1016/j.cocis.2014.07.003
  • Nypelö, (2015), Soft Matter, 11, pp. 2046, 10.1039/C4SM02851A
  • Chen, (2016), ACS Sustainable Chem. Eng., 4, pp. 5204, 10.1021/acssuschemeng.6b01209
  • Nair, (2014), ChemSusChem, 7, pp. 3513, 10.1002/cssc.201402314
  • Matsakas, (2018), Molecules, 23, pp. 1822, 10.3390/molecules23071822
  • Xu, (2021), Front. Bioeng. Biotechnol., 9, pp. 677963, 10.3389/fbioe.2021.677963
  • Garcia Gonzalez, (2017), J. Appl. Polym. Sci., 134, pp. 45318, 10.1002/app.45318
  • Yin, (2018), Colloids Surf., A, 545, pp. 51, 10.1016/j.colsurfa.2018.02.033
  • Zhu, (2021), Biotechnol. Biofuels, 14, pp. 114, 10.1186/s13068-021-01963-5
  • Rao, (2017), ACS Omega, 2, pp. 2858, 10.1021/acsomega.7b00285
  • Suslick, (1999), Annu. Rev. Mater. Sci., 29, pp. 295, 10.1146/annurev.matsci.29.1.295
  • Peters, (1996), J. Mater. Chem., 6, pp. 1605, 10.1039/jm9960601605
  • Gilca, (2015), Ultrason. Sonochem., 23, pp. 369, 10.1016/j.ultsonch.2014.08.021
  • Agustin, (2019), ACS Sustainable Chem. Eng., 7, pp. 19925, 10.1021/acssuschemeng.9b05445
  • Dizhbite, (2004), Bioresour. Technol., 95, pp. 309, 10.1016/j.biortech.2004.02.024
  • Yang, (2016), Int. J. Biol. Macromol., 89, pp. 360, 10.1016/j.ijbiomac.2016.04.068
  • Dong, (2011), Ind. Crops Prod., 34, pp. 1629, 10.1016/j.indcrop.2011.06.002
  • Yang, (2018), Carbohydr. Polym., 181, pp. 275, 10.1016/j.carbpol.2017.10.084
  • Kim, (2013), Colloids Surf., B, 103, pp. 1, 10.1016/j.colsurfb.2012.10.033
  • García, (2010), Process Biochem., 45, pp. 935, 10.1016/j.procbio.2010.02.015
  • Iravani, (2020), Green Chem., 22, pp. 612, 10.1039/C9GC02835H
  • Figueiredo, (2017), Biomaterials, 121, pp. 97, 10.1016/j.biomaterials.2016.12.034
  • Pourmoazzen, (2020), Colloids Surf., B, 186, pp. 110685, 10.1016/j.colsurfb.2019.110685
  • Park, (2015), Carbohydr. Polym., 115, pp. 223, 10.1016/j.carbpol.2014.08.096
  • Witzler, (2018), Molecules, 23, pp. 1885, 10.3390/molecules23081885
  • Raschip, (2011), J. Mol. Struct., 1003, pp. 67, 10.1016/j.molstruc.2011.07.023
  • Sun, (2016), BioResources, 11, pp. 2361
  • Rico-García, (2020), Polymers, 12, pp. 81, 10.3390/polym12010081
  • Dinari, (2021), Sci. Rep., 11, pp. 1962, 10.1038/s41598-021-81393-3
  • Parvathy, (2021), Int. J. Biol. Macromol., 192, pp. 180, 10.1016/j.ijbiomac.2021.09.183
  • Feng, (2011), BioResources, 6, pp. 4942
  • Jin, (2018), ACS Sustainable Chem. Eng., 6, pp. 1763, 10.1021/acssuschemeng.7b03158
  • Figueiredo, (2017), Nanomedicine, 12, pp. 2581, 10.2217/nnm-2017-0219
  • Yan, (2022), Colloids Surf., A, 643, pp. 128815, 10.1016/j.colsurfa.2022.128815
  • Yan, (2022), Colloids Surf., A, 643, pp. 128815, 10.1016/j.colsurfa.2022.128815
  • Bin Imran, (2010), Polym. J., 42, pp. 839, 10.1038/pj.2010.87
  • Dai, (2020), Chem. Mater., 32, pp. 4324, 10.1021/acs.chemmater.0c01198
  • Amaro-Ortiz, (2014), Molecules, 19, pp. 6202, 10.3390/molecules19056202
  • Gutiérrez-Hernández, (2016), J. Photochem. Photobiol., B, 163, pp. 156, 10.1016/j.jphotobiol.2016.08.027
  • Tian, (2017), Biotechnol. Biofuels, 10, pp. 192, 10.1186/s13068-017-0876-z
  • Ge, (2018), ACS Sustainable Chem. Eng., 6, pp. 7181, 10.1021/acssuschemeng.8b01345
  • Thakur, (2017), Vacuum, 146, pp. 342, 10.1016/j.vacuum.2017.08.011
  • Wei, (2022), Environ. Technol., pp. 1
  • Yao, (2014), J. Polym. Res., 21, pp. 465, 10.1007/s10965-014-0465-9
  • Li, (2016), J. Mater. Chem. A, 4, pp. 11888, 10.1039/C6TA03779H
  • Parajuli, (2005), React. Funct. Polym., 62, pp. 129, 10.1016/j.reactfunctpolym.2004.11.003
  • Wang, (2017), Colloids Surf., A, 520, pp. 903, 10.1016/j.colsurfa.2017.02.050
  • Albadarin, (2017), Chem. Eng. J., 307, pp. 264, 10.1016/j.cej.2016.08.089