Sistema robótico de auto-acoplamiento para la interfaz multifuncional SIROM

  1. Bilbao Moreno, Daniel 1
  2. Ferrer Uriarte, Unai 2
  3. Viñals Abelan, Jose Javier 2
  4. Guerra Franco, Gonzalo 2
  5. Irigoyen Gordo, Eloy 1
  6. Cabanes Axpe, Itziar 1
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

  2. 2 SENER Aeroespacial
Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Año de publicación: 2023

Volumen: 20

Número: 3

Páginas: 269-280

Tipo: Artículo

DOI: 10.4995/RIAI.2023.19271 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista iberoamericana de automática e informática industrial ( RIAI )

Resumen

Con objeto de realizar tareas de servicio en órbita de manera autónoma y sin necesidad de personal humano, este trabajo presenta el desarrollo de un sistema robótico de auto-acoplamiento basado en cámaras y marcadores visuales que permiten facilitar el ensamblaje de la interfaz multifuncional SIROM (Standard Interface for Robotic Manipulation), diseñada por SENER Aeroespacial. Para ello se ha implementado un control servo visual, logrando realizar el acoplamiento de manera autónoma entre un dispositivo SIROM activo utilizado como herramienta de un manipulador robótico y su homólogo SIROM pasivo acoplado a un módulo espacial. Este desarrollo permitirá que en el futuro dicha interfaz robótica sea una solución de referencia vanguardista para la realización de estas tareas. La solución presentada ha sido validada mediante la realización de ensayos independientes para cada uno de los subsistemas que componen el prototipo desarrollado y, posteriormente, se ha verificado el funcionamiento del sistema al completo en diferentes escenarios de ensamblaje y ante situaciones de gran desalineamiento. El análisis de los resultados obtenidos en este trabajo permiten corroborar que el prototipo diseñado logra cumplir con el objetivo principal de manera satisfactoria.

Referencias bibliográficas

  • AENOR, 2003. Robots manipuladores industriales: Criterios de an'alisis de prestaciones y métodos de ensayo relacionados (iso 9283:2003).
  • Asif, S., 1958. Announcement of the first satelite. Pravda Newspaper Article, 311-312. URL: https://digitalarchive.wilsoncenter.org/document/165454.pdf?v=1b97d7e06318bd134c57860e8ba96a5d
  • Bradski, G., 2000. The opencv library. Dr. Dobb's Journal of Software Tools.
  • Branz, F., Francesconi, A., 2017. Experimental evaluation of a dielectric elastomer robotic arm for space applications. Acta Astronautica 133, 324--333. https://doi.org/10.1016/j.actaastro.2016.11.007
  • Corke, P., 01 2017. Robotics, Vision and Control. Vol. 118. https://doi.org/10.1007/978-3-319-54413-7
  • De Stefano, M., Mishra, H., Balachandran, R., Lampariello, R., Ott, C., Secchi, C., 2019. Multi-rate tracking control for a space robot on a controlled satellite: A passivity-based strategy. IEEE Robotics and Automation Letters 4 (2), 1319-1326. https://doi.org/10.1109/LRA.2019.2895420
  • De Stefano, M., Mishra, H., Giordano, A. M., Lampariello, R., Ott, C., 2021. A relative dynamics formulation for hardware- in-the-loop simulation of onorbit robotic missions. IEEE Robotics and Automation Letters 6 (2), 3569- 3576. https://doi.org/10.1109/LRA.2021.3064510
  • Diaz-Cano, I., Quintana, F. M., Galindo, P. L., Morgado-Estevez, A., 2022. Eye-to-hand calibration of an industrial robotic arm with structured light 3d cameras. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial 19, 154-163. https://doi.org/10.4995/riai.2021.16054
  • Dong, G., Zhu, Z. H., 2015. Position-based visual servo control of autonomous robotic manipulators. Acta Astronautica 115, 291-302. https://doi.org/10.1016/j.actaastro.2015.05.036
  • EROSS, P., 2022. Eross - eropean robotic orbital support services. URL: https://eross-h2020.eu/eross/
  • European Space Policy Institute, E. R., 2020. 76-in-orbit services-full report. URL: https://www.espi.or.at/reports/in-orbit-services/
  • F. Chaumette, S. H., Hutchinson, S., 2006. Visual servo control, part i: Basic approaches. IEEE Robotics Automation Magazine 13, 82-90. https://doi.org/10.1109/MRA.2006.250573
  • G. Guerra, J. Vi˜nals, I. S. M. D.-C., Gala, J., 2022. Development of robotic fluid transfer interface based on rider connector.
  • Garrido-Jurado, S., Mu˜noz-Salinas, R., Madrid-Cuevas, F., Marín-Jiménez, M., 2014. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition 47 (6), 2280-2292. https://doi.org/10.1016/j.patcog.2014.01.005
  • Hutchinson, S., Hager, G., Corke, P., 11 1996. A tutorial on visual servo control. Robotics and Automation, IEEE Transactions on 12, 651 - 670. https://doi.org/10.1109/70.538972
  • Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N., 04 2021. Fiducial markers for pose estimation: Overview, applications and experimental comparison of the artag, apriltag, aruco and stag markers. Journal of Intelligent Robotic Systems 101. https://doi.org/10.1007/s10846-020-01307-9
  • Kermorgant, O., Chaumette, F., 2014. Dealing with constraints in sensor-based robot control. IEEE Transactions on Robotics 30 (1), 244-257. https://doi.org/10.1109/TRO.2013.2281560
  • Larouche, B. P., Zhu, Z. H., 2014. Autonomous robotic capture of noncooperative target using visual servoing and motion predictive control. Autonomous Robots 37, 157-167. https://doi.org/10.1007/s10514-014-9383-2
  • Muis, A., Ohnishi, K., 2004. Eye-to-hand approach on eye-in-hand configuration within real-time visual servoing. In: The 8th IEEE International Workshop on Advanced Motion Control, 2004. AMC '04. Vol. 10. pp. 647-652. https://doi.org/10.1109/AMC.2004.1297945
  • Muñoz-Salinas, R., 2018. Aruco library documentation. URL: https://docs.google.com/document/d/1QU9KoBtjSM2kF6ITOjQ76xqL7H0TEtXriJX5kwi9Kgc/
  • Qiu, Z., Hu, S., Liang, X., 03 2018. Model predictive control for constrained image-based visual servoing in uncalibrated environments: Mpc for constrained ibvs in uncalibrated environments. Asian Journal of Control 21. https://doi.org/10.1002/asjc.1756
  • Robots, U., FZI, 2021. Universal robots ros driver. GitHub. URL: https://github.com/UniversalRobots/Universal_Robots_ROS_Driver
  • Romero-Ramirez, F. J., Muñoz-Salinas, R., Medina-Carnicer, R., 2018. Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38-47. https://doi.org/10.1016/j.imavis.2018.05.004
  • Scherzinger, S., R¨onnau, A., Dillmann, R., 2019. Contact skill imitation learning for robot-independent assembly programming. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 4309-4316. https://doi.org/10.1109/IROS40897.2019.8967523
  • SENER, G., 2021. Sirom standard interface for robotic manipulation. Youtube. URL: https://www.youtube.com/watch?v=uwpm_SOnYE8
  • SENER, G., 2022a. Ensayo de auto-acoplamiento de la interfaz robótica sirom. Youtube. URL: https://www.youtube.com/watch?v=eNaQr6CyfT8
  • SENER, G., 2022b. Standard interface for robotic manipulation (sirom) - datasheet. SENER Aeroespacial. URL: https://www.aeroespacial.sener/en/pdf-profile-project/standard-interface-for-robotic-manipulation-sirom
  • Vinals, J., Gala, J., Guerra, G., 2020. Standard interface for robotic manipulation (sirom): Src h2020 og5 final results-future upgrades and applications.
  • ViSP, 2022. Tutorial: How to boost your visual servo control law. Visual Servoing Platform. URL: https://visp-doc.inria.fr/doxygen/visp-3.5.0/tutorial-boost-vs.html
  • Zhang, Z., 1999. Flexible camera calibration by viewing a plane from unknown orientations. In: Proceedings of the Seventh IEEE International Conference on Computer Vision. Vol. 1. pp. 666-673. https://doi.org/10.1109/ICCV.1999.791289