Big Data y la alfabetización posthumana del futuro profesorado
-
1
Universidad del País Vasco/Euskal Herriko Unibertsitatea
info
Universidad del País Vasco/Euskal Herriko Unibertsitatea
Lejona, España
ISSN: 1989-8487
Año de publicación: 2021
Título del ejemplar: The Impact of Advances in Artificial Intelligence, Autonomous Learning Systems, and Science
Volumen: 11
Número: 2
Páginas: 102-122
Tipo: Artículo
Otras publicaciones en: Sociología y tecnociencia: Revista digital de sociología del sistema tecnocientífico
Proyectos relacionados
Resumen
Reivindicamos para los futuros docentes una formación ética, informada y reflexiva que permita enfrentarse a los desafíos de los grandes datos. Argumentamos que big data tiene un problema de empoderamiento por su falta de transparencia, recolección extractiva, complejidad tecnológica y falta de control sobre su impacto. Estos problemas pueden ser abordados parcialmente a través de la educación y la formación de los y las futuras docentes implicadas en la formación de la ciudadanía. Proponemos, desde un posicionamiento postcualitativo, una serie de ideas siempre provisionales de actividades de aprendizaje para empezar a construir la alfabetización en datos de las futuras docentes.
Referencias bibliográficas
- Alter, A. (2018). Irresistible. ¿Quién nos ha convertido en yonquis tecnológicos? Barcelona: Paidos.
- BBC (2017). AltSchool. Recuperado de https://bbc.in/3mdxvxQ
- Ben-Porath, S., & Ben Shahar, T. H. (2017). Introduction: Big data and education: ethical and moral challenges. Theory and Research in Education, 15(3), 243–248. https://dx.doi.org/10.1177/1477878517737201
- Bhargava, R. (2019). Data Literacy. In The International Encyclopedia of Media Literacy. https://doi.org/10.1002/9781118978238.ieml0049
- Bhargava, R., Kadouaki, R., Bhargava, E., Castro, G., & D’Ignazio, C. (2016). Data Murals: Using the Arts to Build Data Literacy. The Journal of Community Informatics, 12(3).
- Boyd, D., & Crawford, K. (2012). Critical Questions For Big Data: Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society, 15(5), 662–679. https://doi.org/10.1080/1369118X.2012.678878
- Bowker, G. C. (2013). Data flakes: An afterword to ‘raw data’ is an oxymoron. In L. Gitelman (Ed.), ‘Raw data’ is an oxymoron (pp. 167–171). Cambridge, MA: MIT Press.
- Braidotti, R. (2015). Lo Posthumano. Barcelona: Gedisa.
- Braunack-Mayer, A. J., Street, J. M., Tooher, R., Feng, X., & Scharling-Gamba, K. (2020). Student and Staff Perspectives on the Use of Big Data in the Tertiary Education Sector: A Scoping Review and Reflection on the Ethical Issues. Review of Educational Research, 90(6). https://doi.org/10.3102/0034654320960213
- Buitrago-Ropero, M. E., Ramírez-Montoya, M. S., & Laverde, A. C. (2020). Digital footprints (2005-2019): a systematic mapping of studies in education. Interactive Learning Environments, 1-14. https://doi.org/10.1080/10494820.2020.1814821
- Cano, I. (2019). Sobre las limitaciones de Big Data en ciencias sociales. Sociología y tecnociencia, 9(2), 77-99. https://doi.org/10.24197/st.2.2019.77-98
- Correa, J. M., & Aberasturi-Apraiz, E. (2015). Redes sociales e identidad digital docente. Experiencias de aprendizaje de futuras maestras de educación infantil a partir de la exposición artística Big Bang Data. Opción, 31, 311-333.
- Correa Gorospe, J. M., Aberasturi-Apraiz, E., & Gutierrez-Cabello, A. (2016). Ciudadanía digital, activismo docente y formación de futuras maestras de educación infantil. Revista Latinoamericana de Tecnología Educativa, 15(2), 39-54.
- Correa, J. M., Aberasturi-Apraiz, E., Gutierrez-Cabello, A., & Guerra, R. (2017). Usos críticos de las tecnologías digitales para el aprendizaje dentro y fuera de los contextos institucionales de formación. En H. Arancibia, P. Castillo y J. Saldaña (Eds.), Innovación educativa: perspectivas y desafíos (pp. 175-208). Valparaiso: Ediciones Universidad de Valparaíso.
- Chan K. S., & Zary N. (2019). Applications and challenges of implementing artificial intelligence in medical education: Integrative review. JMIR Medical Education. 5(1). https://doi.org/10.2196/13930
- Crawford, K. (2013, April 1). The hidden biases in big data. HBR Blog Network. Retrieved from https://s.hbr.org/36bjkDO
- D’Ignazio, C., & Bhargava, R. (2015). Approaches to Building Big Data Literacy [Paper presentation]. Bloomberg Data for Good Exchange Conference, New York. https://bit.ly/33lQ3Eq
- D’Ignazio, C., & Bhargava, R. (2018). Cultivating a Data Mindset in the Arts and Humanities. Public, 4(2). https://bit.ly/3fEsQCx
- D’Ignazio, C. (2017). Creative Data Literacy: Bridging the Gap between the Data-Haves and Data-Have Nots. Information Design Journal, 23(1), 6–18. https://doi.org/10.1075/idj.23.1.03dig
- D'Ignazio, C. (2020). Art and Cartography. In A. Kobayashi (Ed.), International Encyclopedia of Human Geography (Second Edition) (pp. 189-207). Elsevier. https://doi.org/10.1016/B978-0-08-102295-5.10510-4
- D’Iganzio, K. & Klein, L. (2020). Data Feminism. Cambridge, MA: MIT Press.
- Daniel, B. K. (2017). Big Data and data science: A critical review of issues for educational research. British Journal of Educational Technology, 50(1). https://doi.org/101-113. 10.1111/bjet.12595
- Dourish, P. (2016). Algorithms and their others: Algorithmic culture in context. Big Data & Society. https://doi.org/10.1177/2053951716665128
- Dyke, E., & Meyerhoff, E. (2018). Radical imagination as pedagogy. Transformations: The Journal of Inclusive Scholarship and Pedagogy, 28(2), 160–180. https://doi.org/10.5325/trajincschped.28.2.0160
- Eynon, R. (2013). The rise of Big Data: what does it mean for education, technology, and media research? Learning Media and Technology, 38(3), 237-240. https://doi.org/10.1080/17439884.2013.771783
- Eubanks, V. (2018). Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. New York: St. Martin’s Press.
- Fotopoulou, A. (2020): Conceptualising critical data literacies for civil society organisations: agency, care, and social responsibility. Information, Communication & Society. https://doi.org/10.1080/1369118X.2020.1716041
- Franco, P. D., Matas, A., & Leiva, J. J. (2020). Big Data Irruption in Education. Pixel-Bit. Revista de Medios y Educación, 57, 59-90. https://doi.org/10.12795/pixelbit.2020.i57.02
- Freire, P. (1970). Pedagogía del Oprimido. Montevideo: Tierra Nueva.
- Gallagher, M., Breines, M., & Blaney, M. (2020). Ontological Transparency, (In)visibility, and Hidden Curricula: Critical Pedagogy Amidst Contentious Edtech. Postdigit Sci Educ. https://doi.org/10.1007/s42438-020-00198-1
- Garg, T. (2020). Artificial intelligence in medical education. The American Journal of Medicine. 133(2). https://doi.org/10.1016/j.amjmed.2019.08.017
- Guillemin, M., & Gillam, L. (2004). Ethics, Reflexivity, and “Ethically Important Moments” in Research. Qualitative Inquiry, 10(2), 261–280. https://doi.org/10.1177/1077800403262360
- Goldsman, F. (2020). La distopia llegó: pensar las tecnologías del reconocimiento de personas desde la periferia. https://bit.ly/2JbCzUY
- Goldsman, F. (2018). Defender los territorios (digitales) sin dejar huella. https://bit.ly/3o5JduZ
- Gray, J., Gerlitz, C., & Bounegru, L. (2018). Data infrastructure literacy. Big Data & Society, 5(2). https://doi.org/10.1177/2053951718786316
- Grzymek, V., & Puntschuh, M. (2019). Was Europa über Algorithmen weiß und denkt. Ergebnisse einer repräsentativen Bevölkerungsumfrage. Bertelsmann Stiftung. https://doi.org/10.11586/2019006
- Gutiérrez-Cabello, A., Correa Gorospe, J. M., & Aberasturi-Apraiz, E. (2020). Disidencia artística frente al control digital en la formación de maestras. Revista Izquierdas 49, 2127-2145.
- Hernando, A. (2020). Catherine D'Ignazio, coautora del libro ‘Data Feminism’. https://bit.ly/37aK4Uh
- Hintz, A., Dencik, L., & Wahl-Jorgensen, K. (2018). Digital citizenship in a datafied society. Medford, USA: Polity Press.
- Jandrić, P., Ryberg, T., Knox, J., Lacković, N., Hayes, S., Suoranta, J., Smith, M., Steketee, A.,Peters, M. A., McLaren, P., Ford, D. R., Asher, G., McGregor, C., Stewart, G., Williamson, B., & Gibbons, A. (2018). Postdigital Dialogue. Postdigital Science and Education, 1(1), 163–189. https://doi.org/10.1007/s42438-018-0011-x
- Leander, K. M. & Burriss, S. K. (2020), Critical literacy for a posthuman world: When people read, and become, with machines. British Journal of Educationa Technoly, 51, 1262-1276. https://doi.org/10.1111/bjet.12924
- Marín, V. I., Carpenter, J. P., & Tur, G. (2020). Pre-service teachers' perceptions of social media data privacy policies. British Journal of Educational Technology. https://doi.org/10.1111/bjet.13035
- Myers, F, Collins H, Glover H, & Watson M. (2019). The automation game: Technological retention activities and perceptions on changes to tutors’ roles and identity. Teaching in Higher Education, 24(4), 545–562. https://doi.org/10.1080/13562517.2018.1498074
- Ofcom (2019). Adults: Media use and attitudes report [Report]. https://bit.ly/39lx7tC
- Ofcom (2020). Adults: Media use and attitudes report [Report]. https://bit.ly/3mebPBw
- Ochoa-Aizpurua, B., Correa Gorospe, J.M., & Gutierrez-Cabello Barragan, A. (2019). Las Tic en la atención a la diversidad educativa: El caso de la comunidad Autónoma Vasca. Revista de Educación a Distancia. 61, 1-21
- O´Neil, C. (2017). Armas de destrucción matemática. Cómo el Big Data aumenta la desigualdad y amenaza la democracia. Madrid: Capitán Swing.
- Pangrazio, L., & Selwyn, N. (2019). ‘Personal data literacies’: A critical literacies approach to enhancing understandings of personal digital data. New Media & Society, 21(2), 419–437. https://doi.org/10.1177/1461444818799523
- Redden J (2018) Democratic governance in an age of datafication: lessons from mapping government disurses and practices. Big Data & Society 5(2), 1-13.
- Sander, I. (2020). Critical Big Data Literacy Tools – Engaging Citizens and Promoting Empowered Internet Usage. ORCA. https://bit.ly/3ldsFzl
- Sandu, N., & Gide, E. (2019). Adoption of AI-Chatbots to enhance student learning experience in higher education in India. 18th International Conference on Information Technology Based Higher Education and Training (ITHET) (pp. 1-5). https://doi.org/10.1109/ITHET46829.2019.8937382
- Southerton C. (2020) Datafication. In: Schintler L., McNeely C. (eds) Encyclopedia of Big Data. Springer, Cham. https://doi.org/10.1007/978-3-319-32001-4_332-1
- Stewart GT, St. Pierre E, Devine N, & Kirloskar-Steinbach M.(2020). The End of the Dream: Postmodernism and Qualitative Research. Qualitative Inquiry. November 2020. https://doi.org/10.1177/1077800420971867
- Turow, J., Hennessy, M., & Draper, N. A. (2015). The tradeoff fallacy: How marketers are misrepresenting American consumers and opening them up to exploitation [Report]. Annenberg School for Communication. https://bit.ly/368vmOd
- Turow, J., Hennessy, M., & Draper, N. (2018). Persistent Misperceptions: Americans’ Misplaced Confidence in Privacy Policies, 2003–2015. Journal of Broadcasting & Electronic Media, 62(3), 461–478. https://doi.org/10.1080/08838151.2018.1451867
- Williamson, B. (2019). El future del curriculum. La educación y el conocimiento en la era digital. Madrid: Morata
- Williamson, B. (2018). Big Data en la Educación. El futuro digital del aprendizaje, la política y la práctica. Madrid: Morata
- Worledge, M., & Bamford, M. (2019). Adtech: Market Research Report. Information Commissioner’s Office. Ofcom. https://bit.ly/2V57o00
- Zuboff, S. (2015). Big other: Surveillance capitalism and the prospects of an information civilization. Journal of Information Technology, 30(1), 75–89. https://doi.org/10.1057/jit.2015.5
- Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power. New York, NY: PublicAffairs.