Organometálicos en síntesis
Ikerbasque, Fundación Vasca para la Ciencia
Bilbao, EspañaPublicaciones en colaboración con investigadoras/es de Ikerbasque, Fundación Vasca para la Ciencia (123)
2024
-
Identification of Riluzole derivatives as novel calmodulin inhibitors with neuroprotective activity by a joint synthesis, biosensor, and computational guided strategy
Biomedicine and Pharmacotherapy, Vol. 174
-
Implementation of IFPTML Computational Models in Drug Discovery Against Flaviviridae Family
Journal of Chemical Information and Modeling, Vol. 64, Núm. 6, pp. 1841-1852
-
MATEO: intermolecular α-amidoalkylation theoretical enantioselectivity optimization. Online tool for selection and design of chiral catalysts and products
Journal of Cheminformatics, Vol. 16, Núm. 1
-
Multi-Endpoint Acute Toxicity Assessment of Organic Compounds Using Large-Scale Machine Learning Modeling
Environmental Science and Technology, Vol. 58, Núm. 23, pp. 10116-10127
-
NANO.PTML model for read-across prediction of nanosystems in neurosciences. computational model and experimental case of study
Journal of Nanobiotechnology, Vol. 22, Núm. 1
-
On the additive artificial intelligence-based discovery of nanoparticle neurodegenerative disease drug delivery systems
Beilstein Journal of Nanotechnology, Vol. 15, pp. 535-555
-
OptiMo-LDLr: An Integrated In Silico Model with Enhanced Predictive Power for LDL Receptor Variants, Unraveling Hot Spot Pathogenic Residues
Advanced Science, Vol. 11, Núm. 13
-
Warfarin–A natural anticoagulant: A review of research trends for precision medication
Phytomedicine, Vol. 128
2023
-
Machine learning in antibacterial discovery and development: A bibliometric and network analysis of research hotspots and trends
Computers in Biology and Medicine, Vol. 155
-
Trends in Nanoparticles for Leishmania Treatment: A Bibliometric and Network Analysis
Diseases, Vol. 11, Núm. 4
2022
-
A Fuzzy System Classification Approach for QSAR Modeling of αAmylase and α-Glucosidase Inhibitors
Current Computer-Aided Drug Design, Vol. 18, Núm. 7, pp. 469-479
-
Machine Learning Study of Metabolic Networks vs ChEMBL Data of Antibacterial Compounds
Molecular Pharmaceutics, Vol. 19, Núm. 7, pp. 2151-2163
-
Multi-output chemometrics model for gasoline compounding
Fuel, Vol. 310
-
Prediction of acute toxicity of pesticides for Americamysis bahia using linear and nonlinear QSTR modelling approaches
Environmental Research, Vol. 214
-
Towards rational nanomaterial design by predicting drug-nanoparticle system interaction vs. bacterial metabolic networks
Environmental Science: Nano, Vol. 9, Núm. 4, pp. 1391-1413
2021
-
Ifptml mapping of drug graphs with protein and chromosome structural networks vs. Pre‐clinical assay information for discovery of antimalarial compounds
International Journal of Molecular Sciences, Vol. 22, Núm. 23
-
MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants
JACC: Basic to Translational Science, Vol. 6, Núm. 11, pp. 815-827
-
New experimental and computational tools for drug discovery. Part – XII
Current Topics in Medicinal Chemistry
-
Palladium-mediated synthesis and biological evaluation of C-10b substituted Dihydropyrrolo[1,2-b]isoquinolines as antileishmanial agents
European Journal of Medicinal Chemistry, Vol. 220
-
Predicting metabolic reaction networks with Perturbation-Theory Machine Learning (PTML) models
Current Topics in Medicinal Chemistry, Vol. 21, Núm. 9, pp. 819-827