Adaptation and Validation of a Scale of Self-Regulation of Learning in Mathematical Problem Solving

  1. Landa, Josune 1
  2. Berciano, Ainhoa 1
  3. Marbán, José M 2
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

  2. 2 Universidad de Valladolid
    info

    Universidad de Valladolid

    Valladolid, España

    ROR https://ror.org/01fvbaw18

Revista:
Uniciencia

ISSN: 2215-3470

Año de publicación: 2024

Título del ejemplar: Uniciencia. January-December, 2024

Volumen: 38

Número: 1

Tipo: Artículo

DOI: 10.15359/RU.38-1.34 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Uniciencia

Resumen

[Objetivo] O objetivo deste trabalho é adaptar e validar uma escala que mede o nível de autorregulação em contextos de resolução de problemas matemáticos de professores em formação inicial no Ensino Básico. [Metodologia] Para a seleção da amostra, foi utilizada uma amostragem não probabilística de conveniência ou incidental e participaram no processo de validação da escola adaptada 269 alunos do primeiro ano do curso de Educação Primária da Universidade do País Basco no ano letivo 2020/2021. O tipo de pesquisa é descritivo e todos os dados foram analisados com o programa SPSS. [Resultados] Em relação à confiabilidade interna, o valor do coeficiente alfa de Cronbach é 0,884. Da mesma forma, para analisar a estrutura fatorial da escala, foi realizada uma análise fatorial exploratória, obtendo um índice KMO de 0,836 > 0,7 e p= 0,000<0,05 no  teste de esfericidade de Bartlett, o que indica uma estrutura de sete fatores: percepção dos alunos sobre sua capacidade e como ela influencia a autorregulação do processo de resolução, ética, resolução de problemas e crescimento pessoal, atitude em relação ao enunciado, crenças negativas de autoeficácia e atribuição causal externa; métodos de resolução de problemas e ambiente social. [Conclusões] A estrutura latente proporcionada pela análise fatorial exploratória concorda com a classificação dos itens estabelecida a priori e permite orientar a análise fatorial confirmatória que dá continuidade à pesquisa.

Referencias bibliográficas

  • Alguacil, M., Boqué, M., & Pañellas, M. (2016). Dificultades en conceptos matemáticos básicos de los estudiantes para maestro. International Journal of Developmental and Educational Psychology. Revista INFAD de Psicología, 1(1), 419-430. https://doi.org/10.17060/ijodaep.2016.n1.v1.162
  • Araya, R. G., & Moreira-Mora, T. E. (2016). Un modelo explicativo de las creencias y actitudes hacia las matemáticas: Un análisis basado en modelos de ecuaciones estructurales. Avances de Investigación en Educación Matemática, 10, 27-51. https://doi.org/10.35763/aiem.v0i10.155
  • Asensio Muñoz, I., Arroyo Resino, D., Ruiz-Lázaro, J., Sánchez-Munilla, M., Ruiz de Miguel, C., Constante-Amores, A., & Navarro-Asencio, E. (2022). Perfil de acceso a la universidad de los maestros en España [University access profile of teachers in Spain]. Educación XXI, 25(2), 39-63. https://doi.org/10.5944/educxx1.31924
  • Bembenutty, H., White, M. C., & Vélez, M. R. (2015). Developing Self-regulation of Learning and Teaching Skills among Teacher Candidates. New York, NY: Springer. https://doi.org/10.1007/978-94-017-9950-8
  • Boekaerts, M. (1997). Self-regulated learning: A new concept embraced by researchers, policy makers, educators, teachers, and students. Learning and instruction, 7(2), 161-186. https://doi.org/10.1016/S0959-4752(96)00015-1
  • Boaler, J. (2016). Mathematical mindsets: Unleashing students' potential through creative math, inspiring messages and innovative teaching. John Wiley & Sons.
  • Caballero, A., Cárdenas, J., & Gordillo, F. (2016). La intervención en variables afectivas hacia las matemáticas y la resolución de problemas matemáticos. El MIRPM. In J. A. Macías, A. Jiménez, J. L. González, M. T. Sánchez, P. Hernández, C. Fernández, F. J. Ruiz, T. Fernández y A. Berciano (Eds.), Investigación en Educación Matemática XX (pp.75-91). Málaga: SEIEM.
  • Callan, G.L. (2014). Self-regulated Learning (SRL) Microanalysis for Mathematical Problem Solving: A Comparison of a SRL Event Measure, Questionnaires, and a Teacher Rating Scale. Theses and Dissertations. 557. https://dc.uwm.edu/etd/557
  • Chen, Q., & Lo, J. (2019). Preservice Teachers’ Mathematics Anxiety and Mathematics Teacher Efficacy: The Roles of Anticipatory Emotions and Regulatory Strategies. Journal of Teacher Education, 70(3), 267-283.
  • Cleary, T. J., & Chen, P. P. (2009). Self-regulation, motivation, and math achievement in middle school: Variations across grade level and math context. Journal of School Psychology, 47(5), 291-314. https://doi.org/10.1016/j.jsp.2017.04.004
  • Cleary, T. J., Velardi, B., & Schnaidman, B. (2017). Effects of the Self-Regulation Empowerment Program (SREP) on middle school students' strategic skills, self-efficacy, and mathematics achievement. Journal of School Psychology, 64, 28-42. https://doi.org/10.1016/j.jsp.2017.04.004
  • Dignath, C., & Büttner, G. (2018). Components of fostering self-regulated learning among students. A meta-analysis on intervention studies at primary and secondary school level. Metacognition and Learning, 13(2), 169-195.
  • Döhrmann, M., Kaiser, G., & Blömeke, S. (2014). The conceptualisation of mathematics competencies in the international teacher education study TEDS-M. In S. Blömeke, F. J. Hsieh, G. Kaiser and W. H. Schmidt (Eds.), International Perspectives on Teacher Knowledge, Beliefs and Opportunities to Learn (pp. 431- 456). Drodrecht, Países Bajos: Springer. https://doi.org/10.1007/978-94-007-6437-8_20
  • Efklides, A. (2011). Interactions of metacognition with motivation and affect in self-regulated learning: The MASRL model. Educational Psychologist, 46(1), 6-25. https://doi.org/10.1080/00461520.2011.538645
  • Fernández-Gago, J., & Marbán, J. M. (2022). Diseño y validación de un instrumento para medir autorregulación en el alumnado de secundaria en contextos de resolución de problemas. Manuscrito en preparación.
  • Formplus. (2021). La escala Likert de 4, 5 y 7 puntos + [Ejemplos de cuestionarios]. Retrieved May 3, 2021, from https://www.formpl.us/blog/point-likert-scale
  • García, J. E. (2019). La formación permanente del profesorado de matemáticas en primaria: una necesidad ignorada. Uno: revista de didáctica de las matemáticas. 83, 42-46
  • Gutiérrez-Gutiérrez, A., Gómez, P., & Rico, L. (2016). Conocimiento matemático sobre números y operaciones de los estudiantes de Magisterio [Mathematical knowledge of numbers and operations in spanish future primary teachers]. Educación XXI, 19(1), 135-158. https://doi.org/10.5944/educXX1.15581
  • Hadwin, A., Järvelä, S., & Miller, M. (2018). Self-regulation, co-regulation, and shared regulation in collaborative learning environments. In D. H. Schunk and J. A. Greene (Eds.), Handbook of self-regulation of learning and performance (pp. 83-106). Routledge/Taylor and Francis Group. https://doi.org/10.4324/9781315697048-6
  • Harding, S.-M., English, N., Nibali, N., Griffin, P., Graham, L., Alom, B., & Zhang, Z. (2019). Self-regulated learning as a predictor of mathematics and reading performance: A picture of students in grades 5 to 8. Australian Journal of Education, 63(1), 74-97. https://doi.org/10.1177/0004944119830153
  • INEE (2013). TEDS-M, Estudio Internacional sobre la formación inicial en matemáticas de los maestros. Informe Español. Volumen II. Análisis secundario. Madrid, MECD.
  • Karunakaran, M.S. (2020). Opportunities to decrease elementary prospective teachers’ mathematics anxiety. The Mathematics Enthusiast, 17(2-3), 469-492. https://doi.org/10.54870/1551-3440.1495
  • Lachapell, G. (2017). La formación didáctico matemática del docente de la República Dominicana. Transformación, 13(3), 327-337
  • Landa, J., Berciano, A., & Marbán, J. M. (2021). Autorregulación y resolución de problemas matemáticos en el alumnado del grado en Educación Primaria. In Diago, P. D., Yáñez D. F., González-Astudillo, M. T. y Carrillo, D. (Eds.), Investigación en Educación Matemática XXIV (p. 662). Valencia: SEIEM.
  • Luttenberger, S., Wimmer, S., & Paechter, M. (2018). Spotlight on math anxiety. Psychology Research and Behavior Management, 11, 311–322. https://doi.org/10.2147/prbm.s141421
  • Marbán, J.M., Palacios, A., & Maroto. (2021). A. Enjoyment of teaching mathematics among pre-service teachers. Mathematics Education Research Journal, 33(3), 613-629. https://doi.org/10.1007/s13394-020-00341-y
  • Marbán, J.M., & Fernández-Gago, J. (2022). Mathematical Problem Solving through the Lens of Ethics and Aristotelian Attitude: A Case Study. Mathematics 10, 2565. https://doi.org/10.3390/math10152565
  • Mizala, A., Martínez, S., & Martínez, F. (2015). Pre-service Elementary School Teachers’ Expectations about Student Performance: How their Beliefs are affected by their Mathematics Anxiety and Student’s Gender. Teaching and Teacher Education, 50, 70-78. https://doi.org/10.1016/j.tate.2015.04.006
  • Ministerio de Educación and Formación Profesional (2018). PISA 2018, Programa para la Evaluación Internacional de los Estudiantes. Informe español. Madrid. Recuperado de https://www.educacionyfp.gob.es/inee/evaluaciones-internacionales/pisa/pisa-2018.htm
  • Ministerio de Educación and Formación Profesional (2020). TIMSS 2019. Estudio internacional de tendencias en matemáticas y ciencias. Informe español. Ministerio de Educación y Formación Profesional.
  • Muñoz-Fernández, G.A., Rodríguez-Gutiérrez, P., & Luque-Vílchez, M. (2019). La formación inicial del profesorado de educación secundaria en españa: perfil y motivaciones del futuro docente. [Initial teacher training for secondary education in Spain: profile and motivations of the future teaching staff]. Educación XX1, 22(1), 71-92. https://doi.org/10.5944/educXX1.20007
  • Nájera Saucedo, J., Salazar Garza, M. L., Vacio Muro, M.A., & Morales Chiané, S. (2020). Evaluación de la autoeficacia, expectativas y metas académicas asociadas al rendimiento escolar. Revista de Investigación Educativa, 38(2), 435-452. http://dx.doi.org/10.6018/rie.350421
  • Nortes Martínez-Artero, R., & Nortes Checa, A. (2017). Competencia matemática, actitud y ansiedad hacia las Matemáticas en futuros maestros. Revista Electrónica Interuniversitaria de Formación del Profesorado, 20(3), 145‐160. http://dx.doi.org/10.6018/reifop.20.3.290841
  • Nortes, R., & Nortes, A. (2018). Conocimientos matemáticos de futuros maestros en resolución de problemas de 6º de primaria. Educatio Siglo XXI, 36(3), 201-230. https://doi.org/10.6018/j/349971
  • Núñez, J., Amieiro, N., Álvarez, D., García, T., & Dobarro, A. (2015). Escala de Evaluación de la Autorregulación del Aprendizaje a partir de Textos (ARATEXR). European Journal of Education and Psychology 8(1), 9-22. https://doi.org/10.1016/j.ejeps.2015.10.002
  • Panadero, E., & Alonso-Tapia, J. (2014). ¿Cómo autorregulan nuestros alumnos? Modelo de Zimmerman sobre estrategias de aprendizaje. Anales de Psicología / Annals of Psychology, 30(2), 450–462. https://doi.org/10.6018/analesps.30.2.167221
  • Pintrich, P.R. (2004). A conceptual framework for as sessing motivation and self-regulated learning in college students. Educational Psychology Review, 16(4), 385-407. https://doi.org/10.1007/s10648-004-0006-x
  • Polya, G. (1990) How To Solve It (2nd edition). Penguin, London.
  • Sakiz, G., Pape, S. J., & Hoy, A. W. (2012). Does perceived teacher affective support matter for middle school students in mathematics classrooms? Journal of School Psychology, 50(2), 235–255. https://doi.org/10.1016/j.jsp.2011.10.005
  • Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. En D. Grouws (Ed.), Handbook for Research on Mathematics Teaching and Learning (pp. 334-370). MacMillan.
  • Schoenfeld, A. (2018). Video analyses for research and professional development: the teaching for robust understanding (TRU) framework. ZDM, 50, 491-506. https://doi.org/10.1007/s11858-017-0908-y
  • Segarra, J., Bueno, A., Barrazueta, J., & Juliá, C. (2021). Estudio de la autoeficacia de las enseñanzas de matemáticas de los estudiantes de cuarto año de la Universidad del Azuay y la Universitat Rovira i Virgili. PNA 16(1), 78-97. https://doi.org/10.30827/pna.v16i1.18519
  • Segarra, J., & Juliá, C. (2021). Mathematical knowledge of elementary education student teachers: variable analysis. (2021). Uniciencia, 35(1), 124-138. https://doi.org/10.15359/ru.35-1.8
  • Schunk, D. H., and Usher, E. L. (2018). Social cognitive theoretical perspective of self-regulation. En D. H. Schunk and J. A. Greene (Eds.), Handbook of self-regulation of learning and performance (pp. 19–35). Routledge/Taylor & Francis Group. https://doi.org/10.4324/9781315697048-2.
  • Suárez, J. M., Fernández, A. P., & Zamora, Á. (2018). Academic Goals in Relation to Motivational Self - regulation Value Strategies, REDIE, 20(2), 15-24. https://doi.org/10.24320/redie.2018.20.2.1689
  • Throndsen, I. (2011). Self-regulated learning of basic arithmetic skills: A longitudinal study. British journal of educational psychology, 81(4), 558-578.
  • Tzohar-Rozen, M., & Kramarski, B. (2017). Metacognition and Meta-Affect in Young Students: Does It Make a Difference in Mathematical Problem Solving? Teachers College Record, 119(13), 1-26. https://doi.org/10.1177/016146811711901308
  • UNESCO [Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura] (2016). Educación 2030: Declaración de Incheon y Marco de Acción para la realización del Objetivo de Desarrollo Sostenible 4: Garantizar una educación inclusiva y equitativa de calidad y promover oportunidades de aprendizaje permanente para todos. UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000245656_spa
  • Usher, E. L., and Pajares, F. (2008). Self-efficacy for self-regulated learning: A validation study. Educational and Psychological Measurement, 68, 443-463. https://doi.org/10.1177/0013164407308475
  • White, M. C., and DiBenedetto, M. K. (2018). Self-regulation: An integral part of standards-based education. In D. H. Schunk y J. A. Greene (Eds.), Handbook of self-regulation of learning and performance (pp. 208–222). Routledge/Taylor y Francis Group. https://doi.org/10.4324/9781315697048-14
  • Zamora, J. (2020). Las actitudes hacia la matemática, el desarrollo social, el nivel educativo de la madre y la autoeficacia como factores asociados al rendimiento académico en matemática. Uniciencia, 34(1), 74–87. https://doi.org/10.15359/ru.34-1.5
  • Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into practice, 41(2), 64-70. https://doi.org/10.1207/s15430421tip4102_2
  • Zimmerman, B. J. (2013). From cognitive modeling to self-regulation: A social cognitive career path. Educational Psychologist, 48(3), 135-147. https://doi.org/10.1080/00461520.2013.794676
  • Zimmerman, B. J., and Kitsantas, A. (2014). Comparing students’ self-discipline and self-regulation measures and their prediction of academic achievement. Contemporary Educational Psychology, 39(2), 145-155.
  • Zimmerman, B. J., and Moylan, A. R. (2009). Self-regulation: Where metacognition and motivation intersect. En D. J. Hacker, J. Dunlosky, y A. C. Graesser (Eds.), Handbook of metacognition in education (pp. 299-315). New York, NY, US: Routledge/Taylor y Francis Group.