Cimentaciones de aerogeneradores terrestressituación actual y tendencias

  1. Jiménez Toña, Rafael 1
  2. Cuadrado Rojo, Jesus 1
  3. Rojí Chandro, Eduardo 1
  1. 1 University of the Basque Country, UPV/EHU
Revista:
Informes de la construcción

ISSN: 0020-0883

Año de publicación: 2024

Volumen: 76

Número: 573

Tipo: Artículo

DOI: 10.3989/IC.6443 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Informes de la construcción

Resumen

The commitments by the governments for the net zero emissions for the coming decades will be a huge challenge for the renewable sector all over the planet. Wind energy will play a significant role in this transition and scale-up, in both offshore and onshore, is a crucial step to move forward. The quick development of the new onshore wind turbine models in the race for the most powerful machine, the gradual increase in the hub height, and the unitary power of the new onshore wind turbines are producing modifications in different components of the turbines. This work presents a review of the onshore wind turbines foundations, especially about the different foundation design concepts available in the onshore business, the analysis of some of them and the trends.

Referencias bibliográficas

  • (1). Global Wind report 2021 - Global Energy Council. March 2021. Available online: https://gwec.net/global-wind-report-2021/ [accessed 26 June 2022].
  • (2). Anuario eolico 2021 - Asociacion Eolica Empresarial (AEE).
  • (3). Per Dannemand Andersen: "Review of Historical and Modern Utilization of Wind Power". 1999. https://windfarmrealities.org/wp-content/uploads/wfr-docs/andersen-modern-utilization-2007.pdf [accessed 26 June 2022].
  • (4). Wael Mohamed, Per-Erik Austrell. A comparative study of three onshore wind turbine foundation solutions. Computers and Geotechnics 2018; 94; 46-57. https://doi.org/10.1016/j.compgeo.2017.08.022
  • (5). S. Adhikari and S. Bhattacharya. Dynamic analysis of wind turbine towers on flexible foundations Shock Vibration 2012; 19: 37-56. https://doi.org/10.1155/2012/408493
  • (6). IEC 61400-6:2020 Wind Energy generation system-Part 6: Tower and Foundation design requirements.
  • (7). Guidelines for design of windturbines - DNV Riso. Second Edition. 2002.
  • (8). Ana Irene Lorea, Antonio Marinez Marin. 3D_SSI Analysis of a Windturbine foundation: https://youtu.be/sieKYcHZfXo [accessed 19 June 2022].
  • (9). Motallebiyan, Bayat, M. and Nadi, B. Analyzing the Effects of Soil-Structure Interactions on the Static Response of Onshore Wind Turbine Foundations Using Finite Element Method. Civil Engineering Infrastructures Journal 2020; 53(1): 189-205.
  • (10). DNVGL-ST-0126 Support structures for windturbines. Edition July 2018.
  • (11). Rafael Jimenez Toña. Congreso Mexico Windpower 2017 - Optimizacion BOP proyectos eólicos para reducción LCOE. http://ejkrause.com.mx/camp17-windpower/bitmemo/PDF02a/02a-RafaelJimenezTona.pdf [accessed 26 June 2022].
  • (12). Tyler Stehly, Philipp Beiter, Donna Heimiller, and George Scott. 2017 Cost of Wind Energy Review. NREL. Technical Report. NREL/TP-6A20-72167. September 2018. https://doi.org/10.2172/1475534
  • (13). Matias Campos, Maria Collado. Design of Foundations for Next Generation Wind Turbine Generators. Windtech International. 2021; March/April.
  • (14). Ifsttar. Recommendations for preventing disorders due to Delayed Ettringite Formation. Marne-la-Vallée: Ifsttar, 2018. Technics and methods, GTI5-A, 70 pages. ISBN 978-2-85782-745-0.
  • (15). Soft spot foundation. CTE Wind. https://www.cte-wind.com/ee/solution/soft-spot-foundation-2/ [accessed 19 June 2022].
  • (16). Esteyco is building the first precast braced foundation in China. https://www.esteyco.com/esteyco-is-building-the-first-precast-braced-foundations-in-china/ [accessed 19 June 2022].
  • (17). Precast concrete foundation for wind turbine, Artepref. https://www.artepref.com/empresa/innovacion/precast-concrete-for-wind-turbines/ [accessed 19 June 2022].
  • (18). Mauricio Terceros, Jann-Eike Saathoff, Martin Achmus. Assessment of Pier Foundations for Onshore Wind Turbines in Non-cohesive Soil. World Academy of Science, Engineering and Technology. International Journal of Civil and Environmental Engineering 2019; 13: 10.
  • (19). WO201510770 (2015) - Foundations systems for towers and method of installing the foundation system for towers. International patent.
  • (20). FR3093741 (2021) - Procédede terrassement d'une fondation pour éolienne terrestre. Patent in France.
  • (21). EP2475872 (2015) - Cimentación mejorada para una torre de aerogenerador. European patent.
  • (22). CN212336074U (2021) - Concrete transfer rock foundation with steel reinforcement cage for wind driven generator. Chinese patent.
  • (23). Edwin Hernandez-Estrada, Orlando Lastres-Danguillecourt, Jose Robles-Ocampo, Andres Lopez-Lopez, Perl Y. Sevilla-Camacho, Blanca Y. Perez-Sariñana, Jose R. Dorrego-Portela. Considerations for the structural analysis of wind turbine towers: A review. Renewable and Sustainable Energy Reviews 2021; 137: 110447. https://doi.org/10.1016/j.rser.2020.110447
  • (24). Lisa Ziegler, Elena Gonzalez, Tim Rubert, Ursula Smolka, Julio J. Melero. Lifetime extension of onshore wind turbines: A review covering Germany, Spain, Denmark, and the UK. Renewable and Sustainable Energy Reviews 82 (2018) 1261-1271. https://doi.org/10.1016/j.rser.2017.09.100
  • (25). Perry M, McAlorum J, Fusiek G, Niewczas P, McKeeman I, Rubert T. Crack monitoring of operational wind turbine foundations. Sensors 2017; 17: 1925. https://doi.org/10.3390/s17081925
  • PMid:28825687 PMCid:PMC5580231
  • (26). Evans Amponsah, Zhenyu Wang, Selase Kwame Mantey. Bending-bearing behaviour of embedded steel ring-foundation connection of onshore wind turbines. Structures 2021; 34: 180-197. https://doi.org/10.1016/j.istruc.2021.07.053
  • (27). X. Bai, M.J. He, R.L. Ma, D.P. Huang, J.L. Chen. Modelling fatigue degradation of the compressive zone of concrete in onshore wind turbine foundations. Constr. Build. Mater. 2017; 132: 425-437. https://doi.org/10.1016/j.conbuildmat.2016.12.026
  • (28). Junling Chen, Jinwei Li, Qize Li, Youqan Feng. Strengthening Mechanism of Studs for Embedded-Ring Foundation of Wind Turbine Tower. Energies 2021; 14(3): 710. https://doi.org/10.3390/en14030710
  • (29). DNVGL-ST-0262 Lifetime extension of wind turbines (2016).
  • (30). DNVGL-SE-0263 Certification for lifetime extension of wind turbines (2016).
  • (31). Song, Sung Hoon, Jeong, Youn Ju, Park, Min Su, Kim, Jeong Soo. An Experimental Study on Reinforcement Method for Reuse of Onshore Wind Turbine Spread Footing Foundations. KSCE Journal of Civil and Environmental Engineering Research 2021; 41(1): 1-11.
  • (32). Wael Mohamed, Per-Erik Austrell, Ola Dahlblom. A new and reusable foundation solution for onshore windmills. Computers and Geotechnics 2018; 99: 14-30. https://doi.org/10.1016/j.compgeo.2018.02.017
  • (33). M.L. Berndt, Influence of concrete mix design on CO2 emissions for large wind turbine foundations. Renewable energy 2015; 83: 608-614. https://doi.org/10.1016/j.renene.2015.05.002