Sistemas AgrivoltaicosNuevos retos para la ingeniería
- Sainz de Murieta Mangado, Joseba Andoni 1
- Burgos, Arantzazu 1
- Pedroza Ochoa, Alvaro 1
- Villena Camarero, Unai 2
- Alvarez Gutierrez, Maria Luz 1
- 1 Dpto. de Ingeniería de Sistemas y Automática. Escuela de Ingeniería de Bilbao. UPV/EHU
- 2 Dpto. de Ingeniería Eléctrica. Escuela de Ingeniería de Bilbao. UPV/EHU
- Cruz Martín, Ana María (coord.)
- Arévalo Espejo, V. (coord.)
- Fernández Lozano, Juan Jesús (coord.)
ISSN: 3045-4093
Año de publicación: 2024
Número: 45
Tipo: Artículo
Resumen
The latest UN Intergovernmental Panel on Climate Change (IPCC) report confirms the evidence and effects of climate change, underlining the need to rapidly reduce greenhouse gas emissions to achieve net zero emissions. The energy sector, a major emitter of greenhouse gases, must significantly increase the deployment of renewable energies, especially solar photovoltaics. However, the expansion of solar panels faces the challenge of reconciling land use for agriculture and livestock. Agrivoltaic installations, which combine these uses with solar generation, are posed as part of the solution and, in turn, pose new engineering challenges, some of which will be discussed in this article.
Referencias bibliográficas
- Barron-Gafford, G. A., Pavao-Zuckerman, M. A., Minor, R. L., Sutter, L. F., Barnett-Moreno, I., Blackett, D. T., Macknick, J. E., 2019. Agrivoltaics provide mutual benefits across the food-energy-water nexus in drylands. Nature Sustainability, 2, 848–855. doi:10.1038/s41893-019-0364-5 DOI: https://doi.org/10.1038/s41893-019-0364-5
- Comisión Europea, 2019. El Pacto Verde Europeo. Bruselas: Comisión Europea. Obtenido de https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=LEGISSUM:4438420
- Comisión Europea, 2020. Estrategia "De la Granja a la Mesa": objetivos generales. Bruselas: Comisión Europea. Obtenido de https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en
- Comisión Europea, 2020. Estrategia de la UE sobre la biodiversidad de aquí a 2030: Reintegrar la naturaleza en nuestras vidas. Bruselas: Comisión Europea. Obtenido de https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=LEGISSUM:4459196
- Comisión Europea, 2022. Estrategia de Energía Solar de la UE. Bruselas: Comisión Europea. Obtenido de https://eur-lex.europa.eu/legal-content/ES/TXT/HTML/?uri=CELEX:52022DC0221#footnote17
- Deutsches Institut für Normung e.V. (DIN). (2021). Agri-photovoltaic systems - Requirements for primary agricultural use. Berlín: Beuth Verlag.
- Dupraz, C., 2023. Assessment of the ground coverage ratio of agrivoltaic systems as a proxy for potential crop productivity. Agroforest Syst. DOI: https://doi.org/10.1007/s10457-023-00906-3
- Ghosh, A., 2023. Nexus between agriculture and photovoltaics (agrivoltaics, agriphotovoltaics) for sustainable development goal: A review. Solar Energy, 266. DOI: https://doi.org/10.1016/j.solener.2023.112146
- Goetzberger, A., & Zastrow, A., January de 1982. On the Coexistence of Solar-Energy Conversion and Plant Cultivation. International Journal of Solar Energy, 1, 55–69. Doi: 10.1080/01425918208909875 DOI: https://doi.org/10.1080/01425918208909875
- IEA, 2023. World Energy Outlook 2023, IEA, Paris https://www.iea.org/reports/world-energy-outlook-2023, Licence: CC BY 4.0 (report); CC BY NC SA 4.0 (Annex A)
- IRENA, 2023. Renewable energy statistics 2023, International Renewable Energy Agency, Abu Dhabi.
- Mead, R., & Willey, R., 1980. The concept of Land Equivalent Ratio and advantages in yields from intercropping. Experimental Agriculture, 16:217e28. DOI: https://doi.org/10.1017/S0014479700010978
- Parlamento Europeo, 2021. Ley Europea del Clima. Bruselas. Obtenido de https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:32021R1119
- Riaz, M., Imran, H., Younas, R., Alam, M., & Butt, N., 2021. Module Technology for Agrivoltaics: Vertical Bifacial Versus Tilted Monofacial Farms. IEEE Journaal of Photovoltaaics, 11(2). DOI: https://doi.org/10.1109/JPHOTOV.2020.3048225
- Riley, J., 1984. A general-form of the land equivalent ratio. Experimental Agriculture, 20:19e29. DOI: https://doi.org/10.1017/S0014479700017555
- Zohdi, T., 2021. A digital-twin andmachine-learning framework for the design of multiobjective agrophotovoltaic solar farms. Computational Mechanics, 68, 357-370 DOI: https://doi.org/10.1007/s00466-021-02035-z