Linde Type L Zeolite: A Privileged Porous Support to Develop Photoactive and Catalytic Nanomaterials

  1. Gartzia Rivero, Leire 1
  2. Bañuelos, Jorge 1
  3. Bizkarra, Kepa
  4. Izquierdo, Urko 1
  5. Barrio, Victoria Laura 1
  6. Cambra, Jose Francisco 1
  7. López Arbeloa, Iñigo 1
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

Libro:
Zeolites and Their Applications

Editorial: IntechOpen

ISBN: 9781789233421 9781789233438

Año de publicación: 2018

Tipo: Capítulo de Libro

DOI: 10.5772/INTECHOPEN.73135 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

Among the wide assortment of zeolites based on aluminosilicates, Linde Type L (LTL) zeolite outstands as a support host owing to its porous framework and high adsorption surfaces. Thus, the incorporation of suitable guest molecules (fluorophores or metals) allows the development of photoactive and catalytic nanomaterials. In this chapter, we describe the design of materials based on LTL zeolite to achieve artificial antennae, inspired in the natural photosynthesis, and ecofriendly materials for the catalytic reforming of biogas. First, we describe the microwave-assisted synthesis of LTL zeolite with tunable size and morphology. Afterward, we test the energy transfer probability between the guest fluorophores into the LTL zeolite pores as the key process enabling the antenna behavior of this hybrid material with broadband absorption and tunable emission or predominant red fluorescence. Finally, we also test the behavior of LTL zeolite as a support material for the catalytic reforming of biogas. To this aim, suitable metals were impregnated onto LTL zeolite featuring different shapes and alkaline metal exchange. Activity tests indicated that disk- and cylinder-shaped hosts were the most active ones, especially when bimetallic (Rh-Ni) catalysts were prepared. However, the alkaline metal exchange was ineffective to increase the hydrogen yield.

Referencias bibliográficas

  • Ogawa M, Kuroda K. Photofunctions of interaction compounds. Chemical Reviews. 1995;95:399-438. DOI: 10.1021/cr00034a005
  • Cheetman AK, Férey G, Loiseau T. Open-framework inorganic materials. Angewandte Chemie, International Edition. 1999;38:3268-3292. DOI: 10.1002/(SICI)1521-3773(19991115)38:22<3268::AID-ANIE3268>3.0.CO;2-U
  • Ramamurthy V. Controlling photochemical reactions via confinement: Zeolites. Journal of Photochemistry and Photobiology C. 2000;1:145-166. DOI: 10.1016/S1389-5567(00)00010-1
  • Tao Y, Kanoh H, Abrams L, Kaneko K. Mesopore-modifed zeolites: Preparation, characterization and applications. Chemical Reviews. 2006;106:896-910. DOI: 10.1021/cr040204o
  • Schulz-Ekloff G, Wöhrle D, van Duffel B, Schoonheydt RA. Chromophores in porous silicas and minerals: Preparation and optical properties. Microporous and Mesoporous Materials. 2002;51:91-138. DOI: 10.1016/S1387-1811(01)00455-3
  • Cronsted AF. Akad. Hankl. Stockholm. 1756;18:120. Translation: Sumelius IrG. In: Occelli ML, Robson H. Molecular Sieves. New York: Van Nostrand Reinhold; 1992
  • Baerlocher C, Meier WH, Olson DH. Atlas of Zeolite Framework Types. 6th ed. Elsevier; 2007. Available from: http://www.iza-structure.org/databases/
  • Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chemical Reviews. 1995;95:559-614. DOI: 10.1021/cr00035a006
  • Mech A, Monguzzi A, Meinardi F, Mezyk J, Macchi G, Tubino R. Sensitized NIR erbium(III) emission in confined geometries: A new strategy for light emitters in telecom applications. Journal of the American Chemical Society. 2010;132:4574-4576. DOI: 10.1021/ja907927s
  • Devaux A, Calzaferri G, Belser P, Cao P, Brühwiler D, Kunzmann A. Efficient and robust host-guest antenna composite for light harvesting. Chemistry of Materials. 2014;26:6878-6885. DOI: 10.1021/cm503761q
  • Lee TP, Saad B, Ng EP, Salleh B. Zeolite Linde Type L as micro-solid phase extraction sorbent for the high performance liquid chromatography determination of ochratoxin A in coffee and cereal. Journal of Chromatography. A. 2012;1237:46-54. DOI: 10.1016/j.chroma.2012.03.031
  • Izquierdo U, Barrio VL, Bizkarra K, Gutierrez AM, Arraibi JR, Gartzia L, Bañuelos J, Lopez-Arbeloa I, Cambra JF. Ni and Rh-Ni catalysts supported on zeolites L for hydrogen and syngas production by biogas reforming processes. Chemical Engineering Journal. 2014;238:178-188. DOI: 10.1016/j.cej.2013.08.093
  • Gartzia-Rivero L, Bañuelos J, López-Arbeloa I. Photoactive nanomaterials inspired by nature: LTL zeolite doped with laser dyes as artificial light harvesting systems. Materials. 2017;10:495. DOI: 10.3390/ma10050495
  • Huber S, Calzaferri G. Energy transfer from dye-zeolite L antenna crystal to bulk silicon. Chemphyschem. 2004;5:239-242. DOI: 10.1002/cphc.200301002
  • Suarez S, Devaux A, Bañuelos J, Bossart O, Kunzmann A, Calzaferri G. Transparent zeolite-polymer hybrid materials with adaptable properties. Advanced Functional Materials. 2007;17:2298-2306. DOI: 10.1002/adfm.200600925
  • Vohra V, Calzaferri G, Destri S, Pasini M, Porzio W, Botta C. Toward white light emission through efficient two-step energy transfer in hybrid nanofibers. ACS Nano. 2010;4:1409-1416. DOI: 10.1021/nn9017922
  • Vietze U, Kraub O, Laeri F, Ihlein G, Schüth F, Limburg B, Abraham M. Zeolite-dye microlasers. Physical Review Letters. 1998;81:4628-4631. DOI: 10.1103/PhysRevLett.81.4628
  • Marega R, Prasetyanto EA, Michiels C, De Cola L, Bonifazi D. Fast targeting and cancer cell uptake of luminescent antibody-nanozeolite bioconjugates. Small. 2016;12:5431-5441. DOI: 10.1002/smll.201601447
  • Zabala A, Brühwiler D, Ban T, Calzaferri G. Synthesis of zeolite L. Tuning size and morphology. Monatschefte für Chemie. 2005;136:77-89. DOI: 10.1007/s00706-004-0253-z
  • Lupulescu AI, Kumar M, Rimer JD. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture. Journal of the American Chemical Society. 2013;135:6608-6617. DOI: 10.1021/ja4015277
  • Tompsett GA, Conner WC, Yngvesson KS. Microwave synthesis of nanoporous materials. Chemphyschem. 2006;7:296-319. DOI: 10.1002/cphc.200500449
  • Bilecka I, Niederberger M. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale. 2010;2:1358-1374. DOI: 10.1039/B9NR00377K
  • Gartzia-Rivero L, Bañuelos J, Izquierdo U, Barrio VL, Bizkarra K, Cambra JF, López-Arbeloa I. Microwave synthesis of LTL zeolites with tunable size and morphology: An optimal support for metal-catalyzed hydrogen production from biogas reforming processes. Particle and Particle Systems Characterization. 2014;31:110-120. DOI: 10.1002/ppsc.201300275
  • Calzaferri G. Nanochannels: Hosts for the supramolecular organization of molecules and complexes. Langmuir. 2012;28:6216-6231. DOI: 10.1021/la3000872
  • Martínez-Martínez V, García R, Sola-Llano R, Gómez-Hortigüela L, Sola-Lano R, Pérez-Pariente J, López-Arbeloa I. Highly luminescent and optically switchable hybrid material by one-pot encapsulation of dyes into MgAPO-11 unidirectional nanopores. ACS Photonics. 2014;1:205-211. DOI: 10.1021/ph4000604
  • Benniston AC, Harriman A. Artificial photosynthesis. Materials Today. 2008;11:26-34. DOI: 10.1016/S1369-7021(08)70250-5
  • El-Khouly M, El-Mohsnawy E, Fukuzumi S. Solar energy conversion: From natural to artificial photosynthesis. Journal of Photochemistry and Photobiology C. 2017;31:36-83. DOI: 10.1016/j.jphotochemrev.2017.02.001
  • Zan G, Wu Q. Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Advanced Materials. 2016;28:2099-2147. DOI: 10.1002/adma.201503215
  • Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R. Lessons from nature about solar light harvesting. Nature Chemistry. 2011;3:763-774. DOI: 10.1038/nchem.1145
  • Hötzer B, Medintz IL, Hildebrandt N. Fluorescence in nanobiotechnology: Sophisticated fluorophores for novel applications. Small. 2012;8:2297-2326. DOI: 10.1002/smll.201200109
  • Claassens NJ, Volpers M, Santos V, van der Oost J, de Vos WM. Potential of proton-pumping rhodopsins: Engineering photosystems into microorganisms. Trends in Biotechnology. 2013;31:633-642. DOI: 10.1016/j.tibtech.2013.08.006
  • Feng X, Ding X, Chen L, Wu Y, Liu L, Addicoat M, Irle S, Dong Y, Jiang D. Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitizing activity. Scientific Reports. 2016;6:32944. DOI: 10.1038/srep32944
  • Insuwan W, Rangsriwatananon K, Meeprasert J, Namuangruk S, Surakhot Y, Kungwan N, Jungsuttiwong S. Combined experimental and theoretical investigation on fluorescence resonance energy transfer of dye loaded on LTL zeolite. Microporous and Mesoporous Materials. 2017;241:372-382. DOI: 10.1016/j.micromeso.2016.12.020
  • Loudet A, Burgess K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chemical Reviews. 2007;107:4891-4932. DOI: 10.1021/cr078381n
  • Frontera P, Macario A, Aloise A, Crea F, Antonucci PL, Nagy JB, Frsusteri F, Giordano G. Catalytic dry-reforming on Ni–zeolite supported catalyst. Catalysis Today. 2012;179:52-60. DOI: 10.1016/j.cattod.2011.07.039
  • Bereketidou OA, Goula MA. Biogas reforming for syngas production over nickel supported on ceria-alumina catalysts. Catalysis Today. 2012;195:93-100. DOI: 10.1016/j.cattod.2012.07.006
  • Damyanova S, Pawelec B, Arishtirova K, Fierro JLG. Biogas reforming over bimetallic PdNi catalysts supported on phosphorus-modified alumina. International Journal of Hydrogen Energy. 2011;36:10635-10647. DOI: 10.1016/j.ijhydene.2011.05.098
  • Xu J, Zhou W, Li Z, Wang J, Ma J. Biogas reforming for hydrogen production over a Ni-Co bimetallic catalyst: Effect of operating conditions. International Journal of Hydrogen Energy. 2010;35:13013-13020. DOI: 10.1016/j.ijhydene.2010.04.075
  • Kaengsilalai A, Luengnaruemitchai A, Jitkarnka S, Wongkasemjit S. Potential of Ni supported on KH zeolite catalysts for carbon dioxide reforming of methane. Journal of Power Sources. 2007;165:347-352. DOI: 10.1016/j.jpowsour.2006.12.005
  • Nimwattanakul W, Luengnaruemitchai A, Jitkarnka S. Potential of Ni supported on clinoptilolite catalysts for carbon dioxide reforming of methane. International Journal of Hydrogen Energy. 2006;31:93-100. DOI: 10.1016/j.ijhydene.2005.02.005
  • San-José-Alonso D, Juan-Juan J, Illán-Gómez MJ, Román-Martínez MC. Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane. Applied Catalysis A: General. 2009;371:54-59. DOI: 10.1016/j.apcata.2009.09.026
  • Diskin AM, Cunningham RH, Ormerod RM. The oxidative chemistry of methane over supported nickel catalysts. Catalysis Today. 1998;46:147-154
  • Luengnaruemitchai A, Kaengsilalai A. Activity of different zeolite-supported Ni catalysts for methane reforming with carbon dioxide. Chemical Engineering Journal. 2008;144:96-102. DOI: 10.1016/j.cej.2008.05.023
  • Garrido Pedrosa AM, Souza MJB, Silva AOS, Melo DMA, Araujo AS. Synthesis, characterization and catalytic properties of the cobalt and nickel supported on HZSM-12 zeolite. Catalysis Communications. 2006;7:791-796. DOI: 10.1016/j.catcom. 2006.02.012
  • El Doukkali M, Iriondo A, Cambra JF, Jalowiecki-Duhamel L, Mamede AS, Dumeignil F, Arias PL. Pt monometallic and bimetallic catalysts prepared by acid sol–gel method for liquid phase reforming of bioglycerol. Journal of Molecular Catalysis A: Chemical. 2013;368-369:125-136. DOI: 10.1016/j.molcata.2012.12.006
  • Ocsachoque M, Pompeo F, Gonzalez G. Rh-Ni/CeO2-Al2O3 catalysts for methane dry reforming. Catalysis Today. 2011;172:226-231. DOI: 10.1016/j.cattod.2011.02.057