A Revisit of the Underlying Fundamentals in the Laser Emission from BODIPYs

  1. Peñafiel, Alaitz
  2. Oliden-Sánchez, Ainhoa 1
  3. Avellanal-Zaballa, Edurne 1
  4. Gartzia-Rivero, Leire 1
  5. Sola-Llano, Rebeca 1
  6. Bañuelos-Prieto, Jorge 1
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

Book:
Dyes and Pigments - Insights and Applications

Publisher: IntechOpen

ISBN: 9781837681136 9781837681143

Year of publication: 2023

Type: Book chapter

DOI: 10.5772/INTECHOPEN.106334 GOOGLE SCHOLAR lock_openOpen access editor

Abstract

This chapter aims to provide a comprehensive assessment of the laser performance of commercially available laser dyes based on the boron-dipyrromethene (BODIPY) chromophore in a liquid state, as well as to remark the main underlying photophysical signatures triggering such photonic behavior. First, we describe their light absorption and fluorescence properties in solution. This spectroscopic study is supplemented with quantum mechanics calculations and electrochemical measurements. Afterward, the dyes are tested as active media of tunable lasers under transversal pumping. The recorded laser efficiencies and photostabilities are correlated with the registered photophysical properties identifying the main structural guidelines and photonic parameters, which rule the laser bands’ position, intensity, and stability. As a result, we provide a comparative dataset of the laser performance, not available hitherto. Besides, the unraveling of the complex molecular structure-photophysics-laser relationship should help in the rational design of new tunable dye lasers with an improved photonic response along the entire visible region and reaching eventually the near infrared.

Bibliographic References

  • Sinkeldam RW, Greco NJ, Tor Y. Fluorescent analogs of biomolecular building blocks: Design, properties, and applications. Chemical Reviews. 2010;110:2579-2619. DOI: 10.1021/cr900301e
  • D’Souza RN, Pischel U, Nau WM. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chemical Reviews. 2011;111:7941-7980. DOI: 10.1021/cr200213s
  • Bessette A. Design, synthesis and photophysical studies of dipyrromethene-based materials: Insights into their applications in organic photovoltaic devices. Chemical Society Reviews. 2014;43:3342-3405. DOI: 10.1039/C3CS60411J
  • Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Aggregation-induced emission: Together we shine, united we soar! Chemical Reviews. 2015;115:11718-11940. DOI: 10.1021/acs.chemrev.5b00263
  • Gierschener J, Varghese S, Park SY. Organic single cristal lasers: A materials view. Advanced Optical Materials. 2016;4:348-364. DOI: 10.1002/adom.201500531
  • Kuehne AJC, Gather MC. Organic lasers: Recent developments on materials, device geometries, and fabrication techniques. Chemical Reviews. 2016;116:12823-12864. DOI: 10.1021/acs.chemrev.6b00172
  • Zhang W, Yao J, Zhao YS. Organic micro/nanoscale lasers. Accounts of Chemical Research. 2016;49:1691-1700. DOI: 10.1021/acs.accounts.6b00209
  • Mirkovic T, Ostroumov EE, Anna JM, Van Grondelle R, Govindjee SGD. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chemical Reviews. 2017;117:249-193. DOI: 10.1021/acs.chemrev.6b00002
  • Li X, Kolemen S, Yoon J, Akkaya EU. Activatable photosensitizers: Agents for selective photodynamic therapy. Advanced Functional Materials. 2017;27:1604053. DOI: 10.1002/adfm.201604053
  • Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD. Fluorescent chemosensors; the past, present and future. Chemical Society Reviews. 2017;46:7105-7123. DOI: 10.1039/C7CS00240H
  • Nguyen VN, Yan Y, Zhao J, Yoon J. Heavy-atom-free photosensitizers: From molecular design to applications in the photodynamic therapy of cancer. Accounts of Chemical Research. 2021;54:207-220. DOI: 10.1021/acs.accounts.0c00606
  • De Moliner F, Kielland N, Lavilla R, Vendrell M. Modern synthetic avenues for the preparation of functional fluorophores. Angewandte Chemie, International Edition. 2017;16:3758-3769. DOI: 10.1002/anie.201609394
  • Kulyk O, Rocard L, Maggini L, Bonifazi D. Synthetic strategy tailoring colours in multichromophoric organic nanostructures. Chemical Society Reviews. 2020;49:8400-8424. DOI: 10.1039/C9CS00555B
  • Loudet A, Burgess K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chemical Reviews. 2007;107:4891-1932. DOI: 10.1021/cr078381n
  • Boens N, Verbelen B, Ortiz MJ, Jiao L, Dehaen W. Synthesis of BODIPY dyes through postfunctionalization of the boron dipyrromethene core. Coordination Chemistry Reviews. 2019;399:213024. DOI: 10.1016/j.ccr.2019.213024
  • Poddar M, Misra R. Recent advances of BODIPY based derivatives for optoelectronic aplications. Coordination Chemistry Reviews. 2020;421:213462. DOI: 10.1016/j.ccr.2020.213462
  • Pavlopoulos TG. Scaling of dye lasers with improved laser dyes. Progess in Quantum Electronics. 2002;26:193-224. DOI: 10.1016/S0079-6727(02)00005-8
  • Treibs A, Kreuzer FH. Justus Liebigs Ann. Chem. 1968;718:208-223
  • Shah M, Thangaraj K, Soong ML, Wolford LT, Boyer JH, Politzer IR, et al. Pyrromethene-BF2 complexes as laser dyes: 1. Heteroatom Chemistry. 1990;1:389-399. DOI: 10.1002/hc.520010507
  • Boyer JH, Haag AM, Sathyamoorthi G, Soong ML, Thangaraj K, Pavlopoulos TG. Pyrromethene-BF2 complexes as laser dyes: 2. Heteroatom Chemistry. 1993;4:39-48. DOI: 10.1002/hc.520040107
  • Boens N, Leen V, Dehaen W. Fluorescent indicators based on BODIPY. Chemical Society Reviews. 2012;41:1130-1172. DOI: 10.1039/C1CS15132K
  • Klfout H, Stewart A, Elkhalifa M, He H. BODIPYs for dye-sensitized solar cells. ACS Applied Materials & Interfaces. 2017;9:39873-39889. DOI: 10.1021/acsami.7b07688
  • Kue CS, Ng SY, Voon SH, Kamkaew A, Chung LP, Kiew LV, et al. Recent strategies to improve boron dipyrromethene (BODIPY) for photodynamic cancer therapy: An updated review. Photochemical & Photobiological Sciences. 2018;17:1691-1708. DOI: 10.1039/C8PP00113H
  • Agazzi ML, Bellatore MB, Durantini AM, Durantini EN, Tomé AC. BODIPYs in antitumoral and antimicrobial photodynamic therapy: An integrating review. Journal of Photochemistry and Photobiology C. 2019;40:21-48. DOI: 10.1016/j.jphotochemrev.2019.04.001v
  • Ma JL, Peng Q , Zhao CH. Circularly polarized luminescence switching in small organic molecules. Chemistry - A European Journal. 2019;25:15441-15454. DOI: 10.1002/chem.201903252
  • Kaur P, Singh K. Recent advances in the application of BODIPY in bioimaging and chemosensing. Journal of Materials Chemistry C. 2019;7:11361-11405. DOI: 10.1039/C9TC03719E
  • Shi Z, Han X, Hu W, Bai H, Peng B, Ji L, et al. Bioapplications of small molecule Aza-BODIPY: From rational structural design to in vivo investigations. Chemical Society Reviews. 2020;49:7533-4567. DOI: 10.1039/D0CS00234H
  • De Bonfils P, Péault L, Nun P, Coeffard V. State of the art of bodipy-based photocatalysts in organic synthesis. European Journal of Organic Chemistry. 2021;2021:1809-1824. DOI: 10.1002/ejoc.202001446. Available from: https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/ejoc.202001446
  • Lu H, Mack J, Yang Y, Shen Z. Structural modification strategies for the rational design of red/NIR region BODIPYs. Chemical Society Reviews. 2014;43:4778-4823. DOI: 10.1039/C4CS00030G
  • Yariv E, Schultheiss S, Saraidarov T, Reisfeld R. Efficiency and photostability of dye-doped solid-state lasers in different hosts. Optical Materials. 2001;16:29-38. DOI: 10.1016/S0925-3467(00)00056-2
  • Ahmad M, King TA, Ko DK, Cha BH, Lee J. Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. Journal of Physics D. 2002;35:1473-1476. DOI: 10.1088/0022-3727/35/13/303
  • Costela A, Garcia-Moreno I, Sastre R. Polymeric solid-state dye lasers: Recent developments. Physical Chemistry Chemical Physics. 2003;5:4745-4763. DOI: 10.1039/B307700B
  • Chénais S, Forget S. Recent advances in solid-state organic lasers. Polymer International. 2012;61:390-406. DOI: 10.1002/pi.3173
  • Bañuelos J. BODIPY dye, the most versatile fluorophore ever? Chemical Record. 2016;16:335-348. DOI: 10.1002/tcr.201500238
  • Laurent AD, Adamo C, Jacquemin D. Dye chemistry with time-dependent density functional theory. Physical Chemistry Chemical Physics. 2014;16:14334-14336. DOI: 10.1039/C3CP55336A
  • Momeni MR, Brown A. Why do TD-DFT excitation energies of BODIPY/Aza-BODIPY families largely deviates from experiments? Answers from electron correlated and multireference methods. Journal of Chemical Theory and Computation. 2015;11:2619-2632. DOI: 10.1021/ct500775r
  • Schlachter A, Fleury A, Tanner K, Soldera A, Habermeyer B, Guilard R, et al. The TDDFT excitation energies of the BODIPYs; the DFT and TDDFT challenge continues. Molecules. 2021;26:1780. DOI: 10.3390/molecules26061780
  • Postils V, Ruipérez F, Casanova D. Mild open-shell character of BODIPY and its impact on singlet and triplet excitation energies. Journal of Chemical Theory and Computation. 2021;17:5825-5838. DOI: 10.1021/acs.jctc.1c00544
  • De Vetta M, González L, Corral I. The role of electronic triplet states and high-lying singlet states in the deactivation mechanism of the parent BODIPY: An ADC(2) adn CASPT2 study. ChemPhotoChem. 2019;3:727-738. DOI: 10.1002/cptc.201800169
  • Nepomnyashchii AB, Bard AJ. Electrochemistry and electrogenerated chemiluminescence of BODIPY dyes. Accounts of Chemical Research. 2012;45:1844-1853. DOI: 10.1021/ar200278b
  • Lin Z, Kohn AW, Van Voorhis T. Toward prediction of nonradiative decay pathways in organic compounds II: Two internal conversion channels in BODIPYs. Journal of Physical Chemistry C. 2020;124:3925-3938. DOI: 10.1021/acs.jpcc.9b08292
  • López Arbeloa F, Bañuelos J, Martínez V, Arbeloa T, López AI. Structural, photophysical and lasing properties of pyrromethene dyes. International Reviews in Physical Chemistry. 2005;24:339-374. DOI: 10.1080/01442350500270551
  • Demchenko AP. Photobleaching of organic fluorophores: Quantitative characterization, mechanisms, protection. Methods and Applications in Fluorescence. 2020;8:022001. DOI: 10.1088/2050-6120/ab7365
  • Jones G II, Kumar S, Klueva O, Pacheco D. Photoinduced electron transfer for pyrromethene dyes. The Journal of Physical Chemistry. A. 2003;107:8429-8434. DOI: 10.1021/jp0340212
  • Cui A, Peng X, Fan J, Chen X, Wu Y, Guo B. Synthesis, spectral properties and photostability of novel boron-dipyrromethene dyes. Journal of Photochemistry and Photobiology A. 2007;186:85-92. DOI: 10.1016/j.jphotochem.2006.07.015
  • Mula S, Ray AK, Banerjee M, Chaudhuri T, Dasgupta K, Chattopadhyay S. Design and development of a new pyrromethen dye with improved phostostability and lasing efficiency: Theoretical rationalization of photophysical and photochemical properties. The Journal of Organic Chemistry. 2008;73:2146-2154. DOI: 10.1021/jo702346s