Imparcialidad y demarcación de valores en la actividad científica

  1. Juan Bautista Bengoetxea 1
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

Revista:
CTS: Revista iberoamericana de ciencia, tecnología y sociedad

ISSN: 1668-0030 1850-0013

Año de publicación: 2024

Volumen: 19

Número: 55

Páginas: 107-125

Tipo: Artículo

DOI: 10.52712/ISSN.1850-0013-422 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: CTS: Revista iberoamericana de ciencia, tecnología y sociedad

Resumen

This article focuses on a new type of tension, identified within the philosophy of scientific practices, between the pretension of developing an impartial science and the accepted fact that there are non-epistemic values presupposed in science. In order to place it in context and to understand its details, we present briefly the value-free ideal (VFI) that underlies it. Its implausibility is now openly recognized in the realm of the philosophy of science about values (epistemic and non-epistemic), primarily in the case of the search for an enhanced impartiality. The myriad of studies on values, however, has made it possible to raise a new problem of demarcation, now located in contexts of uncertainty and risk, focused on the legitimacy (or illegitimacy) of the values presupposed by cognitive activities. Here the nexus between values and the question of a purportedly impartial knowledge emerges, for which we propose an attempted solution.

Referencias bibliográficas

  • Anderson, E. (2004). Uses of Value Judgments in Science: A General Argument, with Lessons from a Case Study of Feminist Research on Divorce. Hypatia, 19(1), 1-24.
  • Antony, L. (1993). Quine as feminist: The radical import of naturalized epistemology. En L. M. Antony & C. E. Witt (Eds.), A Mind of One’s Own: Feminist Essays on Reason and Objectivity (110-153). Boulder: Westview.
  • Batterman, R. W. (2009). Idealization and modeling. Synthese, 169, 427-446.
  • Bengoetxea, J.B. & Todt, O. (2021). Decision-Making in the Nutrition Sciences: A Critical Analysis of Scientific Evidence for Assessing Health Claims. Manuscrito, 44(3), 42-69.
  • Betz, G. (2013). In defense of the value free ideal. European Journal for Philosophy of Science, 3(2), 207–220.
  • Brigandt, I. (2015). Social values influence the adequacy conditions of scientific theories: beyond inductive risk. Canadian Journal of Philosophy, 45, 326-356.
  • Bright, L. K. (2018). Du Bois’ democratic defence of the value free ideal. Synthese, 195(5), 2227-2245.
  • Brown, J. R. (1989). The Rational and the Social. Londres: Routledge.
  • Bunge, M. (2007). A la caza de la realidad: La controversia sobre el realismo. Barcelona: Gedisa.
  • Choglueck, C. (2021). Drug Facts, Values, and the Morning-After Pill. Public Affairs Quarterly, 35(1), 51-70.
  • Daston, L. & Galison, P. (2007). Objectivity. Nueva York: Zone Books.
  • De Melo-Martín, I. & Intemann, K. (2016). The Risk of Using Inductive Risk to Challenge the Value-Free Ideal. Philosophy of Science, 83, 500-520.
  • Douglas, H. (2023). Differentiating Scientific Inquiry and Politics. Philosophy, 98, 123-146.
  • Douglas, H. (2010). Engagement for Progress: Applied Philosophy of Science in Context. Synthese, 177(3), 317-335.
  • Douglas, H. (2009). Science, Policy, and the Value-Free Ideal. Pittsburgh: University of Pittsburgh Press.
  • Douglas, H. (2004). The Irreducible Complexity of Objectivity. Synthese, 138, 453-473.
  • Dupré, J. (2007). Fact and value. En H. Kincaid, J. Dupré & A. Wylie (Eds.), Value-Free Science: Ideals or Illusions (27-41). Oxford: Oxford University Press.
  • Elliott, K. C. & McKaughan, D. J. (2022). Nonepistemic Values and the Multiple Goals of Science. Philosophy of Science, 81(1), 1-21, 2022.
  • Freese, J. & Peterson, D. (2018). The Emergence of Statistical Objectivity: Changing Ideas of Epistemic Vice and Virtue in Science. Sociological Theory, 36(3), 289-313.
  • Funtowicz, S. O. & Ravetz, J. R. (1995). Science for the Post Normal Age. En L. Westra & J. Lemons (Eds.), Perspectives on Ecological Integrity (146-161). Dordrecht: Kluwer.
  • Goldenberg, M. J. (2015). Whose social values? Evaluating Canada’s ‘death of evidence’ controversy. Canadian Journal of Philosophy, 45, 404-424.
  • González, M. I. (2022). Los valores como recursos epistémicos en las críticas feministas de la ciencia. SCIO: Revista de Filosofía, 22, 235-263.
  • Haack, S. (2016). Serious Philosophy. Spazio Filosofico, 18, 395-407.
  • Hempel, C. G. (1965). Science and Human Values. En Aspects of Scientific Explanation and other Essays in the Philosophy of Science (81-96). Nueva York: The Free Press.
  • Holman, B. & Wilholt, T. (2022). The New Demarcation Problem. Studies in History and Philosophy of Science, 91, 211-220.
  • Hudson, R. (2016). Why We Should Not Reject the Value-Free Ideal for Science. Perspectives on Science, 24(2), 167-191.
  • Intemann, K. (2015). Distinguishing between legitimate and illegitimate values in climate modeling. European Journal for Philosophy of Science, 5, 217-232.
  • Kahneman, D. (2012). Pensar rápido, pensar despacio. Barcelona: Penguin Random House.
  • Kellert, S. H., Longino, H. E. & Waters, C. K. (2006). Scientific Pluralism. Minneapolis: University of Minnesota Press.
  • Kincaid, H., Dupré, J. & Wylie, A. (Eds.) (2007). Value-Free Science? Ideals and Illusions. Nueva York: Oxford University Press.
  • Kitcher, P. (2001). Science, Truth, and Democracy. Oxford: Oxford University Press.
  • Koertge, N. (Ed.) (2005). Scientific Values and Civic Virtues. Oxford: Oxford University Press.
  • Koskinen, I. (2021). Objectivity in contexts: withholding epistemic judgement as a strategy for mitigating collective bias. Synthese, 199, 211-225.
  • Koskinen, I. (2020). Defending a Risk Account of Scientific Objectivity. The British Journal for the Philosophy of Science, 71, 1187-1207.
  • Koskinen, I. & Rolin, K. H. (2022). Distinguishing Between Legitimate and Illegitimate Roles for Values in Transdisciplinary Research. Studies in History and Philosophy of Science, 91, 191-198.
  • Kourany, J. (2010). Philosophy of Science after Feminism. Oxford: Oxford University Press.
  • Kuhn, T. S. (1977). Objectivity, Value Judgment, and Theory Choice. En The Essential Tension. Chicago (320-339). Chicago: The University of Chicago Press.
  • Lacey, H. (2004). Is there a significant distinction between cognitive and social values? En P. Machamer & G. Wolters (Eds.), Science, Values, and Objectivity (24-51). Pittsburgh, Pa: The University of Pittsburgh Press.
  • Lacey, H. (1999). Is Science Value Free? Values and Scientific Understanding. Nueva York: Routledge.
  • Laudan, L. (1984). Science and Values. Berkeley: University of California Press.
  • Laudan, L. (1983). The Demise of the Demarcation Problem. En R. S. Cohen & L. Laudan (Eds.), Physics, Philosophy and Psychoanalysis: Essays in Honor of Adolf Grünbaum (111-127). Dordrecht: Reidel.
  • Lloyd, E. A. (1995). Objectivity and the Double Standard for Feminist Epistemologies. Synthese, 104, 351-381.
  • Longino, H. E. (1996). Cognitive and Non-Cognitive Values in Science: Rethinking the Dichotomy. En L. Hankinson & J. Nelson (Eds.), Feminism, Science, and the Philosophy of Science (39-58). Dordrecht: Kluwer.
  • Longino, H. E. (1990). Science as social knowledge: Values and objectivity in scientific inquiry. Princeton: Princeton University Press.
  • Luján, J. L. (2022). Análisis crítico y pensamiento. SCIO: Revista de Filosofía, 22, 19-36.
  • Lusk, G. & Elliott, K.C. (2022). Non-epistemic Values and Scientific Assessment: An Adequacy-for-Purpose View. European Journal for Philosophy of Science, 12, 35. DOI: https://doi.org/10.1007/s13194-022-00458-w.
  • Machamer, P. & Wolters, G. (Eds.) (2004). Science, Values, and Objectivity. Pittsburgh: University of Pittsburgh Press.
  • Mantzavinos, C. (2020). Science, Institutions, and Values. European Journal of Philosophy. DOI: https://doi.org/10.1111/ejop.12579.
  • Martín-Escolano, R., Marín, C., Vega, M., Martín-Montes, A., Medina-Carmona, E., López, C., Rotger, C., Costa, A. & Sánchez-Moreno, M. (2019). Synthesis and biological evaluation of new long-chains quaramides as anti-chagasic agents in the BALB/c mouse model. Bioorganic & Medicinal Chemistry Letters, 27, 865-879.
  • Mayer-Schönberger, M. & Cukier, K. (2013). Big Data. A Revolution That Will Transform How We Live, Work, and Think. Nueva York: Houghton Mifflin Harcourt.
  • McIntyre, L. (2019). The Scientific Attitude: Defending Science from Denial, Fraud, and Pseudoscience. Cambridge: The MIT Press.
  • McMullin, E. (1983). Values in Science. En P. D. Asquith & T. Nickles (Eds.), PSA 1982 - Vol. 2 (3-28). East Lansing: Philosophy of Science Association.
  • Mitchell, S. (2004). The Prescribed and Proscribed Values in Science Policy. En P. Machamer & G. Wolters (Eds.), Science, Values, and Objectivity (245-255). Pittsburgh: University of Pittsburgh Press.
  • Nussbaum, M. (1999). The Professor of Parody: The hip defeatism of Judith Butler. The New Republic, 22, 37-45.
  • OECD (2022). First lessons from government evaluations of COVID-19 responses: A synthesis. Recuperado de: https://oecd.org/coronavirus.
  • OMS/ICMRA (2022). Declaración para los profesionales de la salud: cómo se regulan las vacunas contra la COVID-19 para garantizar que son seguras y eficaces. Recuperado de: www.who.int/es/news/item/11-06-2021-statement-for-healthcare-professionals-how-covid-19-vaccines-are-regulated-for-safety-and-effectiveness.
  • Oreskes, N., Shrader-Frechette, K. & Belitz, K. (1994). Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences. Science, 263, 641-646.
  • Pielke, R. A. (2007). The Honest Broker: Making Sense of Science in Policy and Politics. Cambridge: Cambridge University Press.
  • Pigliucci, M. & Boudry, M. (Eds.) (2013). Philosophy of Pseudoscience: Reconsidering the Demarcation Problem. Chicago: The University of Chicago Press.
  • Pournari, M. (2008). The Distinction between Epistemic and Non-Epistemic Values in the Natural Sciences. Science and Education, 17, 669-676.
  • Pritchard, D. (2021). Intellectual virtues and the epistemic value of truth. Synthese, 198, 5515-5528.
  • Psillos, S. (2015). Evidence: wanted, alive or dead. Canadian Journal of Philosophy, 45, 357-381.
  • Putnam, H. (2002). The Collapse of the Fact-Value Dichotomy and Other Essays. Cambridge: Harvard University Press.
  • Reiss, J. (2008). Error in Economics: Towards a More Evidence-Based Methodology. Londres: Routledge.
  • Resnik, D. B. & Elliott, K. C. (2023). Science, Values, and the New Demarcation Problem. Journal for General Philosophy of Science. DOI: https://doi.org/10.1007/s10838-022-09633-2.
  • Rolin, K. H. (2021). Objectivity, trust and social responsibility. Synthese, 199, 513-533.
  • Rolin, K. H. (2015). Values in Science: The Case of Scientific Collaboration. Philosophy of Science, 82(2), 157-177.
  • Rooney, P. (1992). On Values in Science: Is the Epistemic/Non-Epistemic Distinction Useful? En PSA 1992 – Vol. 1 (13-22).
  • Rudner, R. (1953). The Scientist qua Scientist Makes Value Judgments. Philosophy of Science, 20(1), 1-6.
  • Sadin, E. (2020). La inteligencia artificial o el desafío del siglo. Buenos Aires: Caja Negra.
  • Schurz, G. (2014). Philosophy of Science: A Unified Approach. Londres: Routledge.
  • Shrader-Frechette, K. (1991). Risk and rationality: philosophical foundations for populist reforms. Berkeley: University of California Press.
  • Steel, D. (2010). Epistemic Values and the Argument from Inductive Risk. Philosophy of Science, 77(1), 14–34.
  • Tena-Sánchez, J. & León, F.J. (2022). Y aún más al fondo del bullshit. SCIO: Revista de Filosofía, 22, 209-233.
  • Todt, O. & Luján, J. L. (2015). Non-cognitive Values and Methodological Learning in the Decision-Oriented Sciences. Foundations of Science, 22(1), 215-234.
  • Wandall, B. (2004). Values in science and risk assessment. Toxicology Letters, 152, 265-272.
  • Wilholt, T. (2009). Bias and Values in Scientific Research. Studies in History and Philosophy of Science, 40, 92-101.
  • Wylie, A. & Nelson, L. H. (2007). Coming to terms with the values of science: Insights from feminist science studies scholarship. En H. Kincaid, J. Dupré & A. Wylie (Eds.), Value-Free Science? Ideals and Illusions (58-86). Oxford: Oxford University Press.
  • Zeiss, R. & Egmond, S. (2014). Dissolving Decision Making? Models and Their Roles in Decision-Making Processes and Policy at Large. Science in Context, 27, 631-657.