Analyzing non-destructive methods for building inspection and energy performance: A focus on photogrammetry and infrared thermography

  1. Agrasar-Santiso, Kalare 1
  2. Millan-Garcia, Jose Antonio 2
  3. Otaduy-Zubizarreta, Juan Pedro 1
  4. Baïri, Abderrahmane 3
  5. Martín-Garín, Alexander 1
  1. 1 TICBE Research Group, Department of Architecture, Faculty of Engineering of Gipuzkoa, University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
  2. 2 ENEDI Research Group, Department of Energy Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country UPV/EHU, San Sebastián, Spain
  3. 3 Laboratoire Thermique Interfaces Environnement (LTIE), Université de Paris, France
Book:
Diagnosis of Heritage Buildings by Non-Destructive Techniques

ISBN: 9780443160011

Year of publication: 2024

Pages: 133-158

Type: Book chapter

DOI: 10.1016/B978-0-443-16001-1.00006-1 GOOGLE SCHOLAR lock_openOpen access editor

Abstract

This study focuses on the analysis and applications of non-destructive testing (NDT) methods in building inspection, which are used to measure the energy performance of the object of study and provide information on possible improvements in this aspect. Special attention is given to cultural heritage due to the great importance of NDT methods in this field. In the first step, scientific mapping is used to gather the literature related to the topic, and through scientometric research the relevant topics to be studied are identified. The study provides a comprehensive overview of non-destructive methods, covering various techniques. However, the main focus is on discussing thermography and photogrammetry methods, examining their performance and applications in the context of conservation. Finally, a discussion on the potential and future perspectives of non-destructive methods in the energy sector is presented.

Bibliographic References

  • Aber, (2019)
  • Al-Ruzouq, (2023), Results in Engineering, 18, pp. 101058, 10.1016/j.rineng.2023.101058
  • Asdrubali, (2018)
  • Bisegna, (2014), Journal of Cultural Heritage, 15, pp. 199, 10.1016/j.culher.2013.03.006
  • Bosiljkov, (2010), Journal of Cultural Heritage, 11, pp. 239, 10.1016/j.culher.2009.11.007
  • Cadelano, (2015), Opto-Electronics Review, 23, pp. 100, 10.1515/oere-2015-0012
  • Carlomagno, (2011), Journal of Geophysics and Engineering, 8, pp. S93, 10.1088/1742-2132/8/3/S09
  • CEN, EN 13187:1998: Thermal performance of buildings - Qualitative detection of thermal irregularities in building envelopes - Infrared method (ISO 6781:1983 modified). European Committee for Standardization (1998).
  • Condorelli, (2020), ISPRS International Journal of Geo-Information, 9, pp. 297, 10.3390/ijgi9050297
  • Cursi, (2015), Communications in Computer and Information Science, 527, pp. 383, 10.1007/978-3-662-47386-3_21
  • Delegou, (2019), Heritage, 2, pp. 1211, 10.3390/heritage2020079
  • Diz-Mellado, (2021), Journal of Building Engineering, 37, pp. 102134, 10.1016/j.jobe.2020.102134
  • El Masri, (2020), Construction and Building Materials, 265, pp. 120542, 10.1016/j.conbuildmat.2020.120542
  • Evangelisti, (2015), Sustainability, 7, pp. 10388, 10.3390/su70810388
  • Fu, (2019), Image and Vision Computing, 85, pp. 36, 10.1016/j.imavis.2019.02.007
  • Gao, (2019), Applied Energy, 238, pp. 320, 10.1016/j.apenergy.2019.01.032
  • Garrido, (2021), Sensors, 21, pp. 750, 10.3390/s21030750
  • Garrido, (2020), Infrared Physics & Technology, 111, pp. 103481, 10.1016/j.infrared.2020.103481
  • Gómez-Zurdo, (2021), Informes de la Construcción, 73, pp. e379, 10.3989/ic.77867
  • Hanafi, (2016), Jurnal Teknologi, 78, 10.11113/jt.v78.8265
  • Herraiz, (2020), pp. 103
  • Ibarra-Castanedo, (2013), European Journal of Physics, 34, pp. S91, 10.1088/0143-0807/34/6/S91
  • ISO, ISO 9869-1:2014: Thermal insulation — Building elements — In-situ measurement of thermal resistance and thermal transmittance — Part 1: Heat flow meter method. International Organization for Standardization, Geneva, Switzerland. 3rd edition (2014), 36. Available from https://www.iso.org/standard/59697.html.
  • Keefe, (2010), Journal of Light Construction
  • Kilic, (2015), Journal of Cultural Heritage, 16, pp. 526, 10.1016/j.culher.2014.09.010
  • Krutikova, (2017), Procedia Computer Science, 104, pp. 452, 10.1016/j.procs.2017.01.159
  • Kumar, (2013), Energy and Buildings, 65, pp. 352, 10.1016/j.enbuild.2013.06.007
  • Kylili, (2014), Applied Energy, 134, pp. 531, 10.1016/j.apenergy.2014.08.005
  • Liu, (2023), Automation in Construction, 146, pp. 104689, 10.1016/j.autcon.2022.104689
  • Lourenço, (2007), Engineering Failure Analysis, 14, pp. 280, 10.1016/j.engfailanal.2006.02.002
  • Lualdi, L. B., Saisi, L., Zanzi, M., Gianinetto, & G., Roche, (2001). NDT applied to the diagnosis of historic buildings: The case of some Sicilian Churches. III International Seminar on Structural Analysis of Historical Constructions. 29–46.
  • López, (2018), Multimodal Technologies and Interaction, 2, pp. 21, 10.3390/mti2020021
  • Martín-Garín, (2020), Energies, 13, pp. 6727, 10.3390/en13246727
  • Martínez-Garrido, (2018), Journal of Applied Geophysics, 155, pp. 36, 10.1016/j.jappgeo.2018.03.008
  • Moropoulou, (2013), Construction and Building Materials, 48, pp. 1222, 10.1016/j.conbuildmat.2013.03.044
  • Moyano, (2020), Remote Sensing, 12, pp. 3571, 10.3390/rs12213571
  • Munarim, (2016), Renewable and Sustainable Energy Reviews, 58, pp. 235, 10.1016/j.rser.2015.12.334
  • Murphy, (2009), Structural Survey, 27, pp. 311, 10.1108/02630800910985108
  • Pallarés, (2021), Construction and Building Materials, 297, pp. 123768, 10.1016/j.conbuildmat.2021.123768
  • Pereira, (2021), Energy and Buildings, 250, pp. 111292, 10.1016/j.enbuild.2021.111292
  • Pire, (2017), Robotics and Autonomous Systems, 93, pp. 27, 10.1016/j.robot.2017.03.019
  • Puente, (2018), Remote Sensing, 10, pp. 379, 10.3390/rs10030379
  • Pérez-Gracia, (2013), NDT and E International, 59, pp. 40, 10.1016/j.ndteint.2013.04.014
  • Quirós Rosado, E. M. (2014). Introduction to photogrammetry and cartography applied to civil engineering. Publications Service.
  • Rocha, (2021), Digital Applications in Archaeology and Cultural Heritage, 23, pp. e00203, 10.1016/j.daach.2021.e00203
  • Santos, (2022), Journal of Building Engineering, 49, pp. 103990, 10.1016/j.jobe.2022.103990
  • Sfarra, (2016), Journal of Cultural Heritage, 18, pp. 229, 10.1016/j.culher.2015.07.011
  • Sfarra, (2019), Journal of Thermal Analysis and Calorimetry, 137, pp. 1083, 10.1007/s10973-019-08005-1
  • Tejedor, (2021), Automation in Construction, 122, pp. 103478, 10.1016/j.autcon.2020.103478
  • Tejedor, (2022), Energy and Buildings, 263, 10.1016/j.enbuild.2022.112029
  • Troi, (2014)
  • Tysiac, (2023), Heritage Science, 11, 10.1186/s40494-023-00897-5
  • Udeaja, C., Mansuri, L. E., Ncube Makore, B. C., Baffour Awuah, K. G.,Patel, D. A., Trillo, C., & Jha, K. N. (2021). Digital storytelling: the integration of intangible and tangible heritage in the city of Surat, India. Human-Computer Interaction (HCI) International Conference. Washington, DC, USA, PP. 12794. Available from https://doi.org/10.1007/978-3-030-77411-0_11.
  • Yalçıner, (2019), Journal of Applied Geophysics, 171, pp. 103874, 10.1016/j.jappgeo.2019.103874
  • Yang, B. Zhang, L. Zhang, W., & Ai, Y. (2013). Defects Infrared thermography non-destructive test Wind turbine blades Thermography (imaging) Non destructive testing. Non-destructive testing of wind turbine blades using an infrared thermography: A review. ICMREE 2013 - Proceedings: 2013 International Conference on Materials for Renewable Energy and Environment. 1. 407–410. Available from https://doi.org/10.1109/ICMREE.2013.6893694, https://www.scopus.com/inward/record.uri?eid=2-s2.0-84910100553&doi=10.1109%2fICMREE.2013.6893694&partnerID=40&md5=d41c1834a70a0e85ce16f1ab7bb28702.