Modelling and advanced control design of three-phase electrical machines

  1. SHIRAVANI, FAHIMEH
Dirigée par:
  1. Patxi Alkorta Egiguren Directeur/trice
  2. Jose Antonio Cortajarena Echeverria Directeur/trice

Université de défendre: Universidad del País Vasco - Euskal Herriko Unibertsitatea

Fecha de defensa: 08 septembre 2023

Département:
  1. Ingeniería de Sistemas y Automática

Type: Thèses

Teseo: 822317 DIALNET lock_openADDI editor

Résumé

The main objective of this thesis is to control the electrical three-phase AC machines, using advanced control methods to meet the performance requirements for the plant model. Throughout this thesis, four different electrical three-phase AC machines were employed as motors or generators: the Squirrel Cage Induction Machine (SCIM), Doubly Fed Induction Machine (DFIM), Permanent Magnet Synchronous Machine (PMSM), and Permanent Magnet Vernier Machine (PMVM). When these machines are working as motors or generators, their shaft is mechanically connected to a load. In the generator regimen, two different turbine types were considered: the Wells turbine in Oscillating Water Column (OWC) and Wind Turbine System (WTS).In this thesis, different control techniques are proposed to govern different aspects of the machine. The Integral Sliding Mode Control (ISMC) and Finite Control Set-Model Predictive Control (FCS-MPC) are employed for the current regulation of electrical machines. For velocity regulation, various methods such as the ISMC method, Generalized Predictive Control (GPC) technique, and a GPC-based Proportional Integral (PI) approach were proposed. Three different GPC schemes were implemented: nonlinear, analytical, and industrial, each offering different features.