Creencias del profesorado en formación sobre los zahoríes y aplicación del modelo acuífero

  1. Seijas, Nahia 1
  2. Uskola, Araitz 2
  1. 1 IES Zabalgana
  2. 2 Universidad del País Vasco UPV/EHU
Revista:
Enseñanza de las ciencias: revista de investigación y experiencias didácticas

ISSN: 0212-4521 2174-6486

Año de publicación: 2024

Volumen: 42

Número: 1

Páginas: 125-144

Tipo: Artículo

DOI: 10.5565/REV/ENSCIENCIAS.5944 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Enseñanza de las ciencias: revista de investigación y experiencias didácticas

Resumen

La enseñanza de las ciencias debe facilitar la diferenciación entre información científica y pseudocientífica. Este trabajo recoge los argumentos del profesorado en formación (PF) para dar o no credibilidad a la técnica zahorí (o radiestesia) como estrategia para encontrar agua subterránea. Los participantes previamente habían participado en una secuencia de modelización sobre el funcionamiento de un acuífero kárstico. Se analizaron respuestas escritas individualmente. La mitad del PF creyó en la técnica, pero pocos argumentos incluyeron justificaciones o refutaciones. Varios PF aplicaron el modelo acuífero al explicar el hallazgo de agua, pero recurrieron al electromagnetismo en su lugar para justificar su creencia. Se hallaron dificultades en el PF para argumentar y para transferir el conocimiento construido, fundamentalmente por no identificar de manera adecuada el modelo implicado en el contexto planteado, lo que contribuyó a su credulidad. Se discuten las implicaciones educativas.

Referencias bibliográficas

  • Afonso, A. S. y Gilbert, J. K. (2010). Pseudo‐science: A meaningful context for assessing nature of science. International Journal of Science Education, 32(3), 329-348. https://doi.org/10.1080/09500690903055758
  • Arthurs, L. A. y Elwonger, J. M. (2018). Mental models of groundwater residence: A deeper understanding of students’ preconceptions as a resource for teaching and learning about groundwater and aquifers. Journal of Astronomy & Earth Sciences Education, 5(1), 53-66. https://doi.org/10.19030/jaese.v5i1.10192
  • Bach, J. y Márquez, C. (2017). El estudio de los fenómenos geológicos desde una perspectiva sistémica. Enseñanza de las Ciencias de la Tierra, 25(3), 302-309.
  • Barnett, S. M. y Ceci, S. J. (2002). When and where do we apply what we learn?: A taxonomy for far transfer. Psychological Bulletin, 128(4), 612-637. https://doi.org/10.1037//0033-2909.128.4.612
  • Baytelman, A., Iordanou, K. y Constantinou C. P. (2020). Epistemic beliefs and prior knowledge as predictors of the construction of different types of arguments on socioscientific issues. Journal of Research in Science Teaching, 57, 1199-1227. https://doi.org/10.1002/tea.21627
  • Bell, R. L. y Lederman, N. G. (2003). Understandings of the nature of science and decision making on science and technology based issues. Science Education, 87(3), 352-377. https://doi.org/10.1002/sce.10063
  • Ben-Zvi Assaraf, O. y Orion, N. (2005). A study of junior high students’ perceptions of the water cycle. Journal of Geoscience Education, 53(4), 366-373. https://doi.org/10.5408/1089-9995-53.4.366
  • Beyerstein, B. L. (1995). Distinguishing science from pseudoscience. The Centre for Curriculum and Professional Development.
  • Cano-Orón, L. (2019). A twitter campaign against pseudoscience: The sceptical discourse on complementary therapies in Spain. Public Understanding of Science, 28(6), 679-695. https://doi.org/10.1177/0963662519853228
  • Cortiñas-Rovira, S., Alonso-Marcos, F., Pont-Sorribes, C. y Escribà-Sales, E. (2015). Science journalists’ perceptions and attitudes to pseudoscience in Spain. Public Understanding of Science, 24(4), 450-465. https://doi.org/10.1177/0963662514558991
  • Costall, A., Teo, B. y Pethick, A. (2019). Can you use a coconut to find groundwater? ASEG Extended Abstracts, 1, 1-3. https://doi.org/10.1080/22020586.2019.12073220
  • Couso, D. y Puig, B. (2021). Educación científica en tiempos de pandemia. Alambique. Didáctica de las Ciencias Experimentales, 104, 49-56.
  • Crujeiras Pérez, B. y Jiménez Aleixandre, M. P. (2018). Influencia de distintas estrategias de andamiaje para promover la participación del alumnado de secundaria en las prácticas científicas. Enseñanza de las Ciencias, 36(2), 23-42. https://doi.org/10.5565/rev/ensciencias.2241
  • Deming, D. (2002). Water witching and dowsing. Ground Water, 40(4), 450-452. https://doi.org/10.1111/j.1745-6584.2002.tb02525.x
  • Dickerson, D. L. y Dawkins, K. (2004). Eighth grade students’ understandings of groundwater. Journal of Geoscience Education, 52(2), 178-181. https://doi.org/10.5408/1089-9995-52.2.178
  • Domènech, J. (2022). Mueve la lengua, que el cerebro te seguirá. Graó.
  • Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic and social learning goals. Review of Research in Education, 32(1), 268-291. https://doi.org/10.3102/0091732x07309371
  • Ennis, R. H. (1996). Critical thinking. Prentice Hall.
  • Erduran, S., Simon S. y Osborne J. (2004). TAPping into argumentation: Developments in the application of Toulmin’s Argument Pattern for studying science discourse. Science Education, 88(6), 915-933. https://doi.org/10.1002/sce.20012
  • Erickson, F. (1989). Qualitative methods in research on teaching. En M. C. Wittrock (Ed.), Handbook of research on teaching (pp. 119-161). Macmillan.
  • Feinstein, N. (2011). Salvaging science literacy. Science Education, 95, 168-185. https://doi.org/10.1002/sce.20414
  • Feinstein, N. W., Allen, S. y Jenkins, E. (2013). Outside the pipeline: Reimagining science education for nonscientists. Science, 340(6130), 314-317. https://doi.org/10.1126/science.1230855
  • Fernández-Ferrer, G. y González-García, F. (2010). El problema de la descarga del agua subterránea al medio superficial: estudio de esquemas de conocimiento en universitarios. Didáctica de las ciencias experimentales y sociales, 24, 153-169.
  • Forbes, C. T., Zangori, L. y Schwarz, C. V. (2015). Empirical validation of integrated learning performances for hydrologic phenomena: 3rd-grade students’ model-driven explanation-construction. Journal of Research in Science Teaching, 52(7), 895-921. https://doi.org/10.1002/tea.21226
  • Foulkes, R. A. (1971). Dowsing experiments. Nature, 229, 163-168. https://doi.org/10.1038/229163a0
  • Fuertes-Prieto, M. A., Andrés-Sánchez, S., Corrochano-Fernández, D., Urones-Jambrina, C., Delgado-Martín, M. L., Herrero-Teijón, P. y Ruiz, C. (2020). Pre-service teachers’ false beliefs in superstitions and pseudosciences in relation to science and technology. Science & Education, 29, 1235-1254. https://doi.org/10.1007/s11191-020-00140-8
  • Fundación Española para la Ciencia y la Tecnología. (2017). Percepción social de la ciencia y la tecnología 2016. Editorial MIC.
  • Gilbert, J. K., Boulter, C. J. y Elmer, R. (2000). Positioning models in science education and in design and technology education. En J. K. Gilbert y C. J. Boulter (Eds.), Developing models in science education (pp. 3-17). Kluwer Academic Publisher. https://doi.org/10.1007/978-94-010-0876-1_1
  • González-García, F. y Fernández-Ferrer, G. (2012). Potencialidades y limitaciones de las analogías elaboradas por estudiantes de magisterio para representar las aguas subterráneas. Enseñanza de las Ciencias de la Tierra, 20(3), 229-238.
  • Hansson, L. (2018). Science education, indoctrination, and the hidden curriculum. En M. Matthews (Ed.), History, Philosophy and Science Teaching. Science: Philosophy, History and Education (pp. 283-306). Springer.
  • Hmelo-Silver, C. E., Jordan, R., Eberbach, C. y Sinha, S. (2017). Systems learning with a conceptual representation: A quasi-experimental study. Instructional Science, 45, 53-72. https://doi.org/10.1007/s11251-016-9392-y
  • Jiménez-Aleixandre, M. P. (2010). 10 ideas clave. Competencias en argumentación y uso de pruebas. Graó.
  • Jiménez-Aleixandre, M. P. y Puig, B. (2012). Argumentation, evidence evaluation and critical thinking. En B. J. Frasser, K. G. Tobin y C. J. McRobbie (Eds.), Second International Handbook for Science Education (pp. 1001-1016). Springer.
  • Lack, C. W. y Rousseau, J. (2016). Critical thinking, science, and pseudoscience. Springer.
  • Ministerio de Educación y Formación Profesional. (2022). Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria. BOE, 52, 41571-41789.
  • Osborne, J. (2014). Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education, 25, 177-196. https://doi.org/10.1007/s10972-014-9384-1
  • Pan, Y.-T. y Liu, S.-C. (2018). Students’ understanding of a groundwater system and attitudes towards groundwater use and conservation. International Journal of Science Education, 40(5), 564-578. https://doi.org/10.1080/09500693.2018.1435922
  • Pozo-Muñoz, M. P., Velasco-Martínez, L. C., Martín-Gámez, C. y Tójar-Hurtado, J. C. (2021). ¿Qué sabe el alumnado sobre las problemáticas socio-ambientales del agua y su gestión sostenible? Investigación mixta en Educación Primaria. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 18(3), 3501. http://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i3.3501
  • Preece, P. F. W. y Baxter, J. H. (2000). Scepticism and gullibility: the superstitious and pseudoscientific beliefs of secondary school students. International Journal of Science Education, 22(11), 1147-1156. https://doi.org/10.1080/09500690050166724
  • Quevedo-Ortiz, G., González-García, F. y Fernández-Ferrer, G. (2019). Un estudio sobre pensamiento pseudocientífico en estudiantes de educación secundaria. Didáctica de las Ciencias Experimentales y Sociales, 37, 147‐164.
  • Sabariego, M., Massot, I. y Dorio, I. (2009). Características generales de la metodología cualitativa. En R. Bisquerr. (Ed.), Metodología de la investigación educativa (pp. 275-292). La muralla.
  • Sadler, T. D. y Donnelly, L. A. (2006). Socioscientific argumentation: The effects of content knowledge and morality. International Journal of Science Education, 28(12), 1463-1488. https://doi.org/10.1080/09500690600708717
  • Sadler T. D. y Fowler S. R. (2006). A threshold model of content knowledge transfer for socioscientific argumentation. Science Education, 9, 986-1004. https://doi.org/10.1002/sce.20165
  • Sadler, T. D., Nguyen, H. y Lankford, D. (2016). Water systems understandings: A framework for designing instruction and considering what learners know about water. WIRES Water, 5(1), e1178. https://doi.org/10.1002/wat2.1178
  • Salomon, G. y Perkins, D. N. (1989). Rocky roads to transfer: rethinking mechanism of a neglected phenomenon. Educational Psychologist, 24(2), 113-142. https://doi.org/10.1207/s15326985ep2402_1
  • Sánchez, F. J. (2022). Hidrología Superficial y Subterránea (2.ª ed.). Kindle Direct Publishing.
  • Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., Shwartz, Y., Hug, B. y Krajcik, J. (2009). Developing a learning progression for scientific modeling: making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
  • Seijas, N. y Uskola, A. (2022). Revision and manipulation of physical models as tools for developing the aquifer model by Preservice Elementary Teachers. International Journal of Science Education, 44(11), 1715-1737. https://doi.org/10.1080/09500693.2022.2095453
  • Simon, S., Erduran, S. y Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2), 235-260. http://dx.doi.org/10.1080/09500690500336957
  • Snapir, Z., Eberbach, C., Ben-Zvi-Assaraf, O., Hmelo-Silver, C. y Tripto, J. (2017). Characterising the development of the understanding of human body systems in high-school biology students – a longitudinal study. International Journal of Science Education, 39(15), 2092-2127. https://doi.org/10.1080/09500693.2017.1364445
  • Strahler, A. N. y Strahler, A. H. (2005). Geografía Física (3.ª ed.). Ediciones Omega.
  • Solbes, J., Palomar, R. y Domínguez M. C. (2018). ¿En qué grado afectan las pseudociencias al profesorado? Una mirada al pensamiento de los docentes de ciencias en formación. Mètode Science Studies Journal, 29, 28-35.
  • Toulmin, S. (1958). The uses of argument. ‎Cambridge University Press.
  • Unterbruner, U., Hilberg, S. y Schiffl, I. (2016). Understanding groundwater-students’ pre-conceptions and conceptual change by means of a theory-guided multimedia learning program. Hydrology and Earth System Sciences, 20(6), 2251-2266. https://doi.org/10.5194/hess-20-2251-2016
  • Uskola, A. (2017). Escepticismo del profesorado de Primaria en formación hacia las pseudociencias: Influencia de las concepciones erróneas en el caso de la homeopatía. Profesorado. Revista de currículum y formación del profesorado, 21, 391-408.
  • Van de Pol, J., Volman, M. y Beishuizen, J. (2010). Scaffolding in teacher student interaction: A decade of research. Educational Psychology Review, 22(3), 271-296. https://doi.org/10.1007/s10648-010-9127-6
  • Yates, G. C. R. y Chandler, M. (2000). Where have all the skeptics gone?: Patterns of New Age beliefs and anti-scientific attitudes in preservice primary teachers. Research in Science Education, 30(4), 377-387. https://doi.org/10.1007/bf02461557
  • Zembal-Saul, C. (2009). Learning to teach elementary school science as argument. Science Education, 93, 687-719. http://dx.doi.org/10.1002/sce.20325
  • Zohar, A. (1998). Result or conclusion? Students’ differentiation between experimental results and conclusions. Journal of Biological Education, 32, 53-59. https://doi.org/10.1080/00219266.1998.9655594