Integration of Indoor Air Quality Concerns in Educational Community Through Collaborative Framework of Campus Bizia Laboratory of the University of the Basque Country

  1. Rodriguez-Vidal, I. 1
  2. Oregi, X. 1
  3. Otaegi, J.
  4. Vallespir-Etxebarria, G. 2
  5. Millán-García, J. A. 2
  6. Martín-Garín, A. 2
  1. 1 CAVIAR Research Group, Department of Architecture, University of the Basque Country UPV/EHU
  2. 2 ENEDI Research Group, Department of Thermal Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country UPV/EHU
Libro:
Smart and Sustainable Technology for Resilient Cities and Communities

ISSN: 2662-6829 2662-6837

ISBN: 9789811691003 9789811691010

Año de publicación: 2022

Páginas: 73-88

Tipo: Capítulo de Libro

DOI: 10.1007/978-981-16-9101-0_6 GOOGLE SCHOLAR

Resumen

Nowadays, indoor air quality (IAQ) of occupied spaces has become a major concern for many stakeholders due to the current health situation caused by the COVID-19 pandemic. This problem is even more pressing in the educational context due to the high density of occupation, reduced distance between students, scarce awareness, coexistence of multiple mechanical and natural ventilation systems and the lack of training of users on the use of the building. These reasons, along with the difficulties in recommending a simple, clear criterion of action, generate the need to offer guidance on hands-on, effective improvement and prevention measures for lecturers, staff and students. In this sense, this chapter aims to analyse the evolution of indoor air quality (IAQ) of several educational facilities in the Gipuzkoa Campus of the University of the Basque Country (UPV/EHU). This study examines IAQ in several types of classrooms and offices with different characteristics in order to assess the performance of each one of them. To do this, based on a monitoring campaign, this research used CO2 concentration as a key indicator of air quality that defines ventilation needs and displayed real-time information to occupants. Results have shown the clear effect that the visualisation of the data has on the users. It can be concluded that the information-based decision-making achieved through the employment of monitoring panels could provide an effective and easy-to-use solution to achieve IAQ goals. The research is also framed within the Campus Bizia Laboratory program where the collaborative process between academic staff, service and administrative staff and students in order to respond to sustainability challenges within the university itself.

Información de financiación

This study was financed by the Territorial Planning and Housing Department of the Basque Government and the Department of Architecture of the University of The Basque Country (UPV/EHU). It was also financed under the title “Proyecto Piloto Sobre Calidad Del Aire En Espacios Interiores Universitarios” in the CBL program 2020–2021, promoted by the Directorate of Sustainability, Vice-Rectorate for Innovation and Social Commitment of the University of the Basque Country.

Financiadores

  • UPV/EHU Spain
  • Territorial Planning and Housing Department of the Basque Government Spain

Referencias bibliográficas

  • BPIE (2011) Europe’s buildings under the microscope. A country-by-country review of the energy performance of buildings. Last accessed 10 May 2021
  • Cuerdo-Vilches T COVID-19: La ventilación en centros educativos, una asignatura pendiente. http://hdl.handle.net/10261/227119. Last accessed 10 May 2021
  • ERESEE 2020 (2020) Actualización 2020 de la estrategia a largo plazo para la rehabilitación energética en el sector de la edificación en españa. Ministerio de Transportes, Movilidad y Agenda Urbana. Last accessed 10 May 2021
  • Departamento de Educación del Gobierno Vasco. Directorio de Centros educativos del País Vasco 2020/2021. https://www2.hezkuntza.net. Last accessed 10 May 2021
  • RITE (Regulation of Thermal Installations) (2013) Ministerio de Industria, Energía y Turismo: Reglamento de Instalaciones Térmicas En Los Edificios. Boletin Oficial Del Estado
  • Dorizas PV, Assimakopoulos MN, Helmis C, Santamouris M (2015) An integrated evaluation study of the ventilation rate, the exposure and the indoor air quality in naturally ventilated classrooms in the Mediterranean region during spring. Sci Total Environ 502:557–570
  • Stabile L, Dell’Isola M, Russi A, Massimo A, Buonanno G (2017) The effect of natural ventilation strategy on indoor air quality in schools. Sci Total Environ 595:894–902
  • Schibuola L, Scarpa M, Tambani C (2016) Natural ventilation level assesment in a school building by CO2 concentration measures. Energy Procedia 101:257–264
  • Gutiérrez Cuevas B, Manso Villalaín JM (2018) Proyecto de monitorización de colegios en el curso 2017–2018. Plataforma de Edificación Passivhaus/Universidad de Burgos, Burgos
  • Campo Díaz VJ, Mendivil Martínez A (2006) Calidad del aire interior en los Centros de Educación Infantil del País Vasco. El Instalador. ISSN 0210–4091(427):34–42
  • REHVA (Federation of European Heating, Ventilation and Air Conditioning Associations) REHVA COVID-19 guidance document, 3 April 2020
  • Education & skills funding agency: guidelines on ventilation, thermal comfort and indoor air quality in schools. Building Bulletin, p 101 (2018)
  • Gobierno de España: Medidas de prevención, higiene y promoción de la salud frente a Covid-19 para centros educativos en el curso 2020–2021 (2021)
  • CSIC (Superior Council of Scientific Investigations) Guide for classroom ventilation. https://www.csic.es/sites/default/files/guia_para_ventilacion_en_aulas_csic-mesura.pdf
  • Gobierno del Principado de Asturias: Recomendaciones preventivas de ventilación en centros educativos para reducir las probabilidades de contagio de Covid-19 (2020)
  • Generalitat Valenciana: Guía para la ventilación en los centros educativos de la Comunitat Valenciana (2020)
  • Gobierno Vasco: Guía para reducir el riesgo de transmisión del SARS-CoV-2 por aerosoles en centros educativos (2020)
  • Asociación Madrileña de Empresas Privadas de Enseñanza (CECE-Madrid): Guía para la ventilación en centros escolares (2020)
  • Muelas A, Remacha P, Tizné E, Ballester J (2021) Ventilación natural en las aulas. Universidad de Zaragoza, CSIC, Ventilación Continua vs. Intermitente
  • Comité de Vigilancia de la COVID-19 de la Universidad del País Vasco. https://www.ehu.eus/es/informacion-del-comite-de-vigilancia
  • Rodríguez Vidal I, Otaegi J, Oregi X (2020) Thermal comfort in NZEB collective housing in Northern Spain. Sustainability 12(22):9630. https://doi.org/10.3390/su12229630
  • Rodriguez Vidal I, Oregi X, Otaegi J (2020) Thermal comfort evaluation of offices integrated into an industrial building. Case study of the Basque Country. Environ Clim Technol 24(2):20–31. https://doi.org/10.2478/rtuect-2020-0051
  • Rodriguez I, Oregi X, Otaegi J (2021) Thermal comfort assessment in an administrative area of an industrial building in Spain. In: Littlewood J, Howlett RJ, Jain LC (eds) Sustainability in energy and buildings 2020. Smart innovation, systems and technologies, vol 203. Springer, Singapore. https://doi.org/10.1007/978-981-15-8783-2_2
  • Martín-Garín A, Millán-García JA, Hernández-Minguillón RJ, Prieto MM, Alilat N, Baïri A (2021) Open-Source framework based on LoRaWAN IoT technology for building monitoring and its integration into BIM models. In: Hussain CM, Di Sia P (eds) Handbook of smart materials, technologies, and devices. Springer Nature. https://doi.org/10.1007/978-3-030-58675-1_9-1
  • Martín-Garín A, Millán-García JA, Baïri A, Gabilondo M, Rodríguez A (2020) IoT and cloud computing for building energy efficiency (Ch. 10), Start-Up creation 2nd edition: the smart eco-efficient built environment. Woodhead Publishing Ser Civ Struct Eng 235–265. https://doi.org/10.1016/B978-0-12-819946-6.00010-2
  • Martín-Garín A, Millán-García JA, Baïri A, Millán-Medel J, Sala-Lizarraga JM (2018) Environmental monitoring system based on an open-source platform and the Internet of Things for a building energy retrofit. Autom Constr 87:201–214. https://doi.org/10.1016/j.autcon.2017.12.017
  • ISO (2005) ISO 7730: ergonomics of the thermal environment analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Management
  • INSHT (National Institute for Safety and Health at Work), website of the INSHT (2020): https://www.insst.es/. Last accessed 10 May 2021