Molecular descriptors and big data analysis to extrapolate materials properties
- DE ARMAS MOREJÓN, CARLOS MANUEL
- Ask Hjorth Larsen Director/a
- Joaquim Jornet Somoza Director/a
- Angel Rubio Secades Director/a
Universidad de defensa: Universidad del País Vasco - Euskal Herriko Unibertsitatea
Fecha de defensa: 11 de mayo de 2023
Tipo: Tesis
Resumen
En este trabajo se explora una selección de descriptores moleculares que incluyan información tantoespacial como electrónica. Haciendo uso de estos descriptores se propone simplificar operacionescomplejas como la Optimización de Geometrías y la obtención del Espectro de Absorción. Se haestudiado la validez de los nuevos descriptores utilizando distintos modelos de aprendizaje automáticocomo el Regresión Ridge con Kernel y las Redes Neuronales. Se demuestra que el uso del descriptore-State es suficiente para representar el entorno atómico. Utilizando una unidad de representaciónpara el entorno de un átomo denominada bloque se predicen las coordenadas de los átomos mascercanos. Pero se necesita más información para la correcta propagación de los enlaces moleculares.Los resultados que se presentan avalan la utilización de propiedades obtenidas de cálculos del EstadoFundamental para la predicción de propiedades de Estados Excitados. Las Convolutional NeuralNetwork son capaces de emular el salto complejo entre funcionales de correlación e intercambio.