Experiencia Emocional y sus Fundamentos Biológicosmejorando el Estado Emocional a Través del Tono Vagal

  1. Ainara Aranberri Ruiz 1
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

Revista:
Papeles del psicólogo

ISSN: 0214-7823 1886-1415

Año de publicación: 2023

Título del ejemplar: Uso y abuso del término "psicosocial"

Volumen: 44

Número: 2

Páginas: 95-101

Tipo: Artículo

Otras publicaciones en: Papeles del psicólogo

Resumen

El objetivo principal de este trabajo es el de recopilar conocimiento sobre la base de los fundamentos biológicos de la experiencia emocional y sobre la posibilidad de mejora del bienestar emocional a través del aumento del tono vagal. El tono vagal es considerado un indicador de la experiencia emocional. Y la experiencia emocional es concebida como un proceso dinámico donde interaccionan la propia reacción emocional y la capacidad de regular la reacción emocional. Mediante las intervenciones en biorretroalimentación de la variabilidad de la frecuencia cardíaca centradas en la respiración y mediante la neuroestimulación transauricular del nervio vago es posible aumentar el tono vagal de forma que se mejora el estado emocional.

Referencias bibliográficas

  • Aldao, A., Nolen-Hoeksema, S., & Schweizer, S. (2010). Emotionregulation strategies across psychopathology: A meta-analytic review. Clinical Psychology Review, 30, 217-237. http://dx.doi.org/10.1016/j. cpr.2009.11.004
  • Antonino, D., Teixeira, A. L., Maia-Lopes, P. M., Souza, M. C., SabinoCarvalho, J. L., Murray, A. R., Deuchars, J., & Vianna, L. C. (2017). Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: a randomized placebo-controlled trial. Brain Stimulation, 10(5), 875-881. https://doi. org/10.1016/j.brs.2017.05.006
  • Aranberri-Ruiz, A., Aritzeta, A., Olarza, A., Soroa, G., & Mindeguia, R. (2022). Reducing anxiety and social stress in primary education: a breath-focused heart rate variability biofeedback intervention. International Journal of Environmental Research and Public Health, 19(16). https://doi.org/10.3390/ijerph191610181
  • Aritzeta, A., Aranberri-Ruiz, A., Soroa, G., Mindeguia, R., & Olarza, A. (2022). Emotional self-regulation in primary education: a heart ratevariability biofeedback intervention programme. International Journal of Environmental Research and Public Health, 19(9). https://doi. org/10.3390/ijerph19095475
  • Aritzeta, A., Soroa, G., Balluerka, N., Muela, A., Gorostiaga, A., & Alieri, J. (2017). Reducing Anxiety and improving academic performance through a biofeedback relaxation training program. Applied Psychophysiol Biofeedback, 42, 193-202. https://doi.org/10.1007/ s10484-017-9367-z
  • Arnsten, A. F., Raskind, M. A., Taylor, F. B., & Connor, D. F. (2015). The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress disorder. Neurobiology of stress, 1, 89-99. https://doi.org/10.1016/j. ynstr.2014.10.002
  • Aubert-Broche, B., Fonov, V. S., García-Lorenzo, D., Mouiha, A., Guizard, N., Coupé, P., Eskildsen, S. F., & Collins, D. L. (2013). A new method for structural volume analysis of longitudinal brain MRI data and its application in studying the growth trajectories of anatomical brain structures in childhood. NeuroImage, 82, 393-402. https://doi. org/10.1016/j.neuroimage.2013.05.065
  • Balzarotti, S., Biassoni, F., Colombo, B., & Ciceri, M. R. (2017). Cardiac vagal control as a marker of emotion regulation in healthy adults: A review. Biological Psychology, 130, 54-66. https://doi.org/10.1016/j. biopsycho.2017.10.008
  • Beekwilder, J. P., & Beems ,T. (2010). Overview of the clinical applications of vagus nerve stimulation. Journal Clinical Neurophysiol, 27(2):130-8. https://doi.org/10.1097/WNP.0b013e3181d64d8a
  • Behnke, M., Kreibig, S. D., Kaczmarek, L. D., Assink, M., & Gross, J. J. (2022). Autonomic nervous system activity during positive emotions: a meta-analytic review. Emotion Review, 14(2), 132-160. https://doi. org/10.1177/17540739211073084
  • Beissner, F., Meissner, K., Bär, K. J., & Napadow, V. (2013). The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. Journal of Neuroscience, 33, 10503- 10511. https://doi.org/10.1523/JNEUROSCI.1103-13.2013
  • Berthoud, H. R., & Neuhuber, W. L. (2000). Functional and chemical anatomy of the afferent vagal system. Autonomic Neuroscience: Basic & Clinical, 85(1-3), 1-17.
  • Blair, C., & Diamond, A. (2008). Biological processes in prevention and intervention: The promotion of self-regulation as a means of preventing school failure. Development and Psychopathology, 20, 899-911. https:// doi.org/10.1017/S0954579408000436
  • Borges, L. M., & Naugle, A. E. (2017). The role of emotion regulation in predicting personality dimensions. Personality and Mental Health, 11(4), 314-334. https://doi.org/10.1002/pmh.1390
  • Bretherton, B., Atkinson, L., Murray, A., Clancy, J., Deuchars, S., & Deuchars, J. (2019). Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation. Aging, 11(14), 4836-4857. https://doi.org/10.18632/ aging.102074
  • Brown, H. F., DiFrancesco, D., & Noble, S. J. (1979). How does adrenaline accelerate the heart? Nature, 280, 235-236.
  • Butt, M. F., Albusoda, A., Farmer, A. D., & Aziz, Q. (2020). The anatomical basis for transcutaneous auricular vagus nerve stimulation. Journal of Anatomy, 236(4), 588-611. https://doi.org/10.1111/joa.13122
  • Casey, B. J., Tottenham, N., Listan, C., & Durston, S. (2005). Imaging the developing brain: what have we lea med about cognitive development? Trends in Cognitive Sciences, 9(3), 104-110.
  • Chen, C. C., & Williams, C. L. (2012). Interactions between epinephrine, ascending vagal fibers, and central noradrenergic systems in modulating memory for emotionally arousing events. Frontiers in Behavioral Neuroscience, 6. https://doi.org/10.3389/fnbeh.2012.00035
  • Clancy, J. A., Mary, D. A., Witte, K. K., Greenwood, J. P., Deuchars, S. A., & Deuchars, J. (2014). Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimulation, 7(6), 871-877. https://doi.org/10.1016/j.brs.2014.07.031
  • Colombo, D., Fernández-Álvarez, J., Suso-Ribera, C., Cipresso, P., Valev, H., Leufkens, T., Sas, C., Garcia-Palacios, A., Riva, G., y Botella, C. (2020). The need for change: Understanding emotion regulation antecedents and consequences using ecological momentary assessment. Emotion, 20, 30-36. https://doi.org/10.1037/emo0000671
  • Costafreda, S. G., Brammer, M. J., David, A. S., & Fu, C. H. (2008). Predictors of amygdala activation during the processing of emotional stimuli: a meta-analysis of 385 PET and fMRI studies. Brain Research Reviews, 58, 57-70. https://doi.org/10.1016/j.brainresrev.2007.10.012
  • Couck, M. de, Cserjesi, R., Caers, R., Zijlstra, W. P., Widjaja, D., Wolf, N., Luminet, O., Ellrich, J., & Gidron, Y. (2017). Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects. Autonomic Neuroscience, 203, 88-96. https://doi.org/10.1016/j.autneu.2016.11.003
  • Darwin, C. (1872). The expression of the emotions in man and animals. Londres: Murray. https://doi.org/10.1037/10001-000
  • Decety, J., Michalska, K. J., & Kinzler, K. D. (2011). The contribution of emotion and cognition to moral sensitivity: A neurodevelopmental study. Cerebral Cortex, 22, 209-220. https://doi.org/10.1093/cercor/bhr111
  • Dehaene-Lambertz, G., & Spelke, E. S. (2015). The infancy of the human brain. Neuron, 88, 93-109. https://doi.org/10.1016/j.neuron.2015.09.026
  • Diamond, A. (2002). Normal development of prefrontal cortex from birth to young adulthood: Cognitive functions, anatomy, and biochemistry. En D. Stuss y R. Knight (Eds.). Principles of frontal lobe function (pp. 466-503). Nueva York. Oxford University Press. https://doi. org/10.1093/acprof:oso/9780195134971.003.0029
  • Etkin, A., Büchel, C., & Gross, J. J. (2015). The neural bases of emotion regulation. Nature Reviews Neuroscience, 16, 693-700. https://doi. org/10.1038/nrn4044
  • Farmer, A. D., Strzelczyk, A., Finisguerra, A., Gourine, A. V., Gharabaghi, A., Hasan, A., Burger, A. M., Jaramillo, A. M., Mertens, A., Majid, A., Verkuil, B., Badran, B. W., Ventura-Bort, C., Gaul, C., Beste, C., Warren, C. M., Quintana, D. S., Hämmerer, D., Freri, E., … Koenig, J. (2020). International consensus based review and recommendations for minimum reporting standards in research on transcutaneous vagus nerve stimulation (version 2020). Frontiers in Human Neuroscience, 14, 568051. https://doi.org/10.3389/fnhum.2020.568051
  • Frangos, E., Ellrich, J., & Komisaruk, B. R. (2015). Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fmri evidence in humans. Brain Stimulation, 8(3), 624- 636. https://doi.org/10.1016/j.brs.2014.11.018
  • Goessl, V. C., Curtiss, J. E., & Hofmann, S. G. (2017). The effect of heart rate variability biofeedback training on stress and anxiety: a metaanalysis. Psychological Medicine, 47, 2578-2586. https://doi. org/10.1017/S0033291717001003
  • Goggins, E., Mitani, S., & Tanaka, S. (2022). Clinical perspectives on vagus nerve stimulation: present and future. Clinical Science, 136(9), 695-709. https://doi.org/10.1042/CS20210507
  • Goldin, P. R., Moodie, C. A., & Gross, J. J. (2019). Acceptance versus reappraisal: Behavioral, autonomic, and neural effects. Cognitive, Affective, & Behavioral Neuroscience, 19(4), 927–944. https://doi. org/10.3758/s13415-019-00690-7
  • Gourine, A. V., Machhada, A., Trapp, S., & Spyer, K. M. (2016). Cardiac vagal preganglionic neurones: an update. Autonomic Neuroscience: Basic y Clinical, 199, 24-8. https://doi.org/10.1016/j.autneu.2016.06.003
  • Gross, J. J., & Thompson, R. A. (2007). Emotion Regulation: Conceptual Foundations. En J. J. Gross (Ed.), Handbook of emotion regulation (p. 3-24). Hove: The Guilford Press.
  • Gross, J. J. (2015). Emotion regulation: Current status and future prospects. Psychological Inquiry, 26, 1-26. https://doi.org/10.1080/104784 0X.2014.940781
  • Haartsen, R., Jones, E. J. H., & Johnson, M. (2016). Human brain development over the early years. Current Opinion in Behavioral Sciences, 10, 149-154. https://doi.org/10.1016/j.cobeha.2016.05.015
  • Jones, A. M., West, K. B., y Suveg, C. (2019). Anxiety in the School Setting: A framework for evidence-based practice. School Mental Health, 11, 4-14. https://doi.org/10.1007/s12310-017-9235-2
  • Karavaev, A. S., Kiselev, A. R., Gridnev, V. I., Borovkova, E. I., Prokhorov, M. D., Posnenkova, O. M., y Shvartz, V. A. (2013). Phase and frequency locking of 0.1-Hz oscillations in heart rate and baroreflex control of blood pressure by breathing of linearly varying frequency as 277 determined in healthy subjects. Human Physiology, 39, 416-425. https://doi.org/10.1134/S0362119713010040
  • Kim, H. G., Cheon, E. J., Bai, D. S., Lee, Y. H., & Koo, B. H. (2018). Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry investigation, 15(3), 235-245. https://doi.org/10.30773/ pi.2017.08.17
  • Kiselev, A. R., Karavaev, A. S., Gridnev, V. I., Prokhorov, M. D., Ponomarenko, V. I., Borovkova, E. I., y Bezruchko, B. P. (2016). Method of estimation of synchronization strength between lowfrequency oscillations in heart rate variability and photoplethysmographic waveform variability. Russian Open Medical Journal, 5, e0101. https:// doi.org/10.15275/rusomj.2016.0101
  • Komisaruk, B. R., & Frangos, E. (2022). Vagus nerve afferent stimulation: projection into the brain, reflexive physiological, perceptual, and behavioral responses, and clinical relevance. Autonomic Neuroscience, 237, 102908. https://doi.org/10.1016/j.autneu.2021.102908
  • Lagercrantz, H. (2016). Patterning of the brain, neural proliferation, and migration. In: Infant Brain Development. Springer, Cham. https://doi. org.ehu.idm.oclc.org/10.1007/978-3-319-44845-9_2
  • Lantyerm, A. S., Viana, M. B., y Padovani, R. C. (2013). Biofeedback in the treatment of stress and anxiety-related disorders: A critical review. PsicoUSF, 18, 131-140. https://doi.org/10.1590/S1413-82712013000100014
  • LeDoux, J. (2012). Rethinking the emotional brain. Neuron, 73(4), 653- 676. https://doi.org/10.1016/j.neuron.2012.02.004
  • Li, G., Wang, L., Yap, P.-T., Wang, F., Wu, Z., Yu, M., Dong, P., Kim, J., Shi, F., Rekik, I., Lin, W., & Shen, D. (2019). Computational neuroanatomy of baby brains: a review. Neuroimage, 185, 906-925. https://doi.org/10.1016/j.neuroimage.2018.03.042
  • Michalska, K. J., Kinzler, K. D., & Decety, J. (2013). Age-related sex differences in explicit measures of empathy do not predict brain responses across childhood and adolescence. Developmental Cognitive Neuroscience, 3, 22-32. https://doi.org/10.1016/j.dcn.2012.08.001
  • Neuhuber, W. L., & Berthoud, H.-R. (2021). Functional anatomy of the vagus system emphasis on the somato-visceral interface. Autonomic Neuroscience: Basic and Clinical, 236. https://doi.org/10.1016/j. autneu.2021.102887
  • Noble, L. J., Souza, R. R., & McIntyre, C. K. (2019). Vagus nerve stimulation as a tool for enhancing extinction in exposure-based therapies. Psychopharmacology, 236(1), 355-367. https://doi.org/ 10.1007/s00213-018-4994-5
  • Ochsner, K. N., & Gross, J. J. (2014). The neural bases of emotion and emotion regulation: A valuation perspective. In J. J. Gross (Ed.), Handbook of emotion regulation (pp. 23-42). The Guilford Press.
  • Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251(1), 1-24. https://doi.org/10.1111/j.1749-6632.2012.06751.x
  • Pleeging, E., Burger, M., & Exel, J. van (2019). The relations between hope and subjective well-being: a literature overview and empirical analysis. Applied Research in Quality of Life: The Official Journal of the International Society for Quality-Of-Life Studies, 16(3), 1019-1041. https://doi.org/10.1007/s11482-019-09802-4
  • Porges, S. W. (1992). Vagal tone: a physiologic marker of stress vulnerability. Pediatrics, 90, 498-504.
  • Porges, S. W. (1995). Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. Polyvagal theory. Psychophysiology, 32, 301-318. https://doi.org/10.1111/j.1469-8986.1995. tb01213.x
  • Porges, S. W. (2004). Neuroception: A subconscious system for detecting threats and safety. Zero Three, 24, 19-24.
  • Porges, S. W. (2007). The Polyvagal perspective. Biol. Psychol., 74, 116- 143.
  • Porges, S. W. (2009). The polyvagal theory: new insights into adaptive reactions of the autonomic nervous system. Cleve. Clin. J. Med., 76, S86-S90. https://doi.org/10.3949/ccjm.76.s2.17
  • Porges, S. W. (2022). Polyvagal theory: a science of safety. Frontiers in Integrative Neuroscience, 16, 871227. https://doi.org/10.3389/ fnint.2022.871227
  • Raz, G., Touroutoglou, A., Wilson-Mendenhall, C., Gilam, G., Lin, T., Gonen, T., & Barrett, L. F. (2016). Functional connectivity dynamics during film viewing reveal common networks for different emotional experiences. Cognitive, Affective, & Behavioral Neuroscience, 16(4), 709-723. https://doi.org/10.3758/s13415-016-0425-4
  • Rush, K. S., Golden, M., Mortenson, B. P., Albohn, D., y Horger, M. (2017). The effects of a mindfulness and biofeedback program on the onand off-task behaviors of students with emotional behavioral disorders. Contemporary School Psychology, 21, 347-357. https://doi. org/10.1007/s40688-017-0140-3
  • Schwartz, M. S., y Andrasik, F. (2003). Definitions of biofeedback and applied psychophysiology biofeedback: A practitioner’s guide. Nueva York: Guilford Press.
  • Sclocco, R., Garcia, R. G., Kettner, N. W., Isenburg, K., Fisher, H. P., Hubbard, C. S., Ay, I., Polimeni, J. R., Goldstein, J., Makris, N., Toschi, N., Barbieri, R., & Napadow, V. (2019). The influence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: a multimodal ultrahigh-field (7t) fmri study. Brain Stimulation, 12(4), 911-921. https://doi.org/10.1016/j.brs.2019.02.003
  • Silvers, J. A., Insel, C., Powers, A., Franz, P., Helion, C., Martin, R. E., Mischel, V., Weber, J., & Ochsner, K. N. (2016). vlPFC-vmPFCamygdale interactions under lineage-related differences in cognitive regulation of emotion. Cerebral Cortex, 27, 3502-3514.
  • Silvers, J. A., Insel, C., Powers, A., Franz, P., Helion, C., Martin, R., Weber, J., Mischel, W., Casey, B. J., & Ochsner, J. N. (2017). The transition from childhood to adolescence is marked by a general decrease in amygdala reactivity and an affect-specific ventral-to-dorsal shift in medial prefrontal recruitment. Developmental Cognitive Neuroscience, 25, 128-137. https://doi.org/10.1016/j.dcn.2016.06.005
  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Circulation, 93, 1043-1065. https://doi.org/10.1161/01.CIR.93.5.1043
  • Thomas, J. C., Letourneau, N., Campbell, T. S., Tomfohr-Madsen, L., & Giesbrecht, G. F. (2017). Developmental origins of infant emotion regulation: Mediation by temperamental negativity and moderation by maternal sensitivity. Developmental Psychology, 53(4), 611-628. https://doi.org/10.1037/dev0000279
  • Trevizol, A., Barros, M. D., Liquidato, B., Cordeiro, Q., & Shiozawa, P. (2015).Vagus nerve stimulation in neuropsychiatry: targeting anatomybased stimulation sites. Epilepsy Behaviour, 51, 18. https://doi. org/10.1016/j.yebeh.2015.07.009
  • Uccula, A., Enna, M., & Mulatti, C. (2020). Care vs food as an emotional regulation strategy in elementary school children: the role of the attachment style. The Journal of Genetic Psychology, 181(5), 336-347. https://doi.org/10.1080/00221325.2020.1768504
  • Unites States of Food and Drug Admnistration (FDA) (19/01/2022). Electrocore’s gammaCore vagus nerve stimulator an FDA breakthrough device. FDA News. https://www.fdanews.com/articles/206215-electrocoresgammacore-vagus-nerve-stimulator-an-fda-breakthrough-device
  • Wang, Y., Li, L., Li, S., Fang, J., Zhang, J., Wang, J., Zhang, Z., Wang, Y., He, J., Zhang, Y., & Rong, P. (2022). Toward diverse or standardized: a systematic review identifying transcutaneous stimulation of auricular branch of the vagus nerve in nomenclature. Neuromodulation: Technology at the Neural Interface, 25(3), 366-379. https://doi. org/10.1111/ner.13346
  • Weil-Malherbe, H., Axelrod, J., & Tomchick, R. (1959). Blood-brain barrier for adrenaline. Science, 129, 1226-1227.
  • Wolf, V., Kühnel, A., Teckentrup, V., Koenig, J., & Kroemer, N. B. (2021). Does transcutaneous auricular vagus nerve stimulation affect vagally mediated heart rate variability? A living and interactive Bayesian meta-analysis. Psychophysiology, 58(11), e13933. https://doi.org/10.1111/psyp.13933