Análisis de la comprensión y razonamiento epistémico de los estudiantes sobre los equilibrios de solubilidad

  1. Domínguez Sales, M. Consuelo 1
  2. Guisasola, Jenaro
  3. González-Mendia, Oskar 2
  4. Zuazagoitia, Daniel 2
  1. 1 Universitat de València
    info

    Universitat de València

    Valencia, España

    ROR https://ror.org/043nxc105

  2. 2 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

Revista:
Enseñanza de las ciencias: revista de investigación y experiencias didácticas

ISSN: 0212-4521 2174-6486

Año de publicación: 2023

Volumen: 41

Número: 2

Páginas: 47-69

Tipo: Artículo

DOI: 10.5565/REV/ENSCIENCIAS.5764 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Enseñanza de las ciencias: revista de investigación y experiencias didácticas

Objetivos de desarrollo sostenible

Resumen

Los equilibrios de solubilidad constituyen un contenido esencial del currículum educativo de química introductoria. Para detectar las dificultades de aprendizaje del alumnado respecto a la forma en que se alcanza dicho equilibrio y qué sucede durante este proceso, se ha diseñado un cuestionario de preguntas abiertas. Las respuestas se analizaron mediante un análisis fenomenográfico, lo que permitió definir categorías interpretativas del conjunto del alumnado. El análisis epistemológico de los argumentos ofrece «explicaciones intermedias» entre ideas ingenuas e ideas científicas, además de respuestas fragmentadas e inconsistencia interna. Los resultados muestran que la comprensión de los equilibrios de solubilidad se ve dificultada por deficiencias en la comprensión de los conceptos de equilibrio, solubilidad de una sal y saturación de la disolución, así como los problemas para relacionarlos.

Referencias bibliográficas

  • Adadan, E. y Savasci, F. (2012). An analysis of 16-17-year-old students’ understanding of solution chemistry concepts using a two-tier diagnostic instrument. International Journal of Science Education, 34(4), 513-544. https://doi.org/10.1080/09500693.2011.636084
  • Bilgin, I., Şenocak, E., y Sözbilir, M. (2009). The Effects of Problem-Based Learning Instruction on University Students’ Performance of Conceptual and Quantitative Problems in Gas Concepts. Eurasia Journal of Mathematics, Science and Technology Education, 5(2), 153-164. https://doi.org/10.12973/ejmste/75267
  • Blanco, A. y Prieto, T. (1997). Pupils’ views on how stirring and temperature affect the dissolution of a solid in a liquid: A cross‐age study (12 to 18). International Journal of Science Education, 19(3), 303-315. https://doi.org/10.1080/0950069970190304
  • Çalik, M. (2005). A cross-age study of different perspectives in solution chemistry from junior to senior high school. International Journal of Science and Mathematics Education, 3(4), 671-696. https://doi.org/10.1007/s10763-005-1591-y
  • Çalik, M., Ayas, A. y Ebenezer, J. V. (2005). A review of solution chemistry studies: Insights into students’ conceptions. Journal of Science Education and Technology, 14(1), 29-50. https://doi.org/10.1007/s10956-005-2732-3
  • Çalik, M., Ayas, A. y Coll, R. K. (2010). Investigating the effectiveness of teaching methods based on a four-step constructivist strategy. Journal of Science Education and Technology, 19(1), 32-48. https://doi.org/10.1007/s10956-009-9176-0
  • Cam, A. y Geban, O. (2013). Effectiveness of case-based learning instruction on students’ understanding of solubility equilibrium concepts. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 44(44), 97-108. https://open.metu.edu.tr/handle/11511/53507
  • Chang, R. (2010). General chemistry: the essential concepts (10.ª ed.). Boston: McGraw-Hill.
  • Chi, M. T., Slotta, J. D. y De Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27-43. https://doi.org/10.1016/0959-4752(94)90017-5
  • Dahsah, C. y Coll, R. K. (2007). Thai Grade 10 and 11 students’ conceptual understanding and ability to solve stoichiometry problems. Research in Science & Technological Education, 25(2), 227-241. https://doi.org/10.1080/02635140701250808
  • De Berg, K. (2012). A study of first-year chemistry students’ understanding of solution concentration at the tertiary level. Chemistry Education Research and Practice, 13, 8-16. https://doi.org/10.1039/c1rp90056k
  • Devetak, I., Vogrinc, J. y Glažar, S. (2009). Assessing 16-year-old students’ understanding of aqueous solution at submicroscopic level. Research in Science Education, 39(2), 157-179. https://doi.org/10.1007/s11165-007-9077-2
  • Driver, R. (1989). Students’ conceptions and the learning of science. International Journal of Science Education, 11, 481-490. https://doi.org/10.1080/0950069890110501
  • Ebenezer, J. V. y Erickson, G. L. (1996). Chemistry students’ conceptions of solubility: A phenomenography. Science Education, 80(2), 181-201. https://doi.org/10.1002/(SICI)1098-237X(199604)80:2<181::AID-SCE4>3.0.CO;2-C
  • Ebenezer, J. y Fraser, D. (2001). First year chemical engineering students’ conceptions of energy in solution processes: Phenomenographic categories for common knowledge construction. Science Education, 85, 509. https://doi.org/10.1002/sce.1021
  • Gorodetsky, M. y Gussarsky, E. (1986). Misconceptualization of the chemical equilibrium concept as revealed by different evaluation methods. European Journal of Science Education, 8(4), 427-441. https://doi.org/10.1080/0140528860080409
  • Guisasola, J., Furió, C. y Ceberio, M. (2008). Science education based on developing guided research. Science education in focus, 173-201.
  • Gussarsky, E. y Gorodetsky, M. (1990). On the concept «chemical equilibrium»: The associative framework. Journal of Research in Science Teaching, 27, 197-204. https://doi.org/10.1002/tea.3660270303
  • Hackling, M. W. y Garnett, P. J. (1985). Misconceptions of chemical equilibrium. The European Journal of Science Education, 7(2), 205-214. https://doi.org/10.1080/0140528850070211
  • Hammer, D. (1994). Epistemological beliefs in introductory physics. Cognition and instruction, 12(2), 151-183. https://doi.org/10.1207/s1532690xci1202_4
  • Hofer, B. K. y Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of educational research, 67(1), 88-140. https://doi.org/10.3102/00346543067001088
  • Hernando, M., Furió, C., Hernández, J. y Calatayud, M. L. (2003). Comprensión del equilibrio químico y dificultades en su aprendizaje. Enseñanza de las ciencias, 21(Extra 0), 111-118.
  • Johnstone, A. H. (2010). You can’t get there from here. Journal of chemical education, 87(1), 22-29. https://doi.org/10.1021/ed800026d
  • Kousathana, M. y Tsaparlis, G. (2002). Students’ errors in solving numerical chemical equilibrium problems. Chemistry Education Research and Practice, 3(1), 5-17. https://doi.org/10.1039/B0RP90030C
  • Krause, S. y Tasooji, A. (2007). Diagnosing students’ misconceptions on solubility and saturation for understanding of phase diagrams. En Annual Conference & Exposition (pp. 12-540). https://peer.asee.org/1699
  • Krause, S. J. y Isaacs-Sodeye, O. (2013). The effect of a visually-based intervention on students’ misconceptions related to solutions, solubility, and saturation in a core materials course. En 2013 ASEE Annual Conference & Exposition (pp. 23-1189). https://peer.asee.org/22574
  • Leach, J. y Scott, P. H. (2008). Teaching for the conceptual understanding: An approach drawing on individual and sociocultural perspective. En S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 647-675). Nueva York / Londres: Routledge.
  • Lee, O., Eichunger, D. C., Anderson, C. W., Berkheimer, G. D. y Blakeslee, T. D. (1993). Changing middle school students’ conceptions of matter and molecules. Journal of Research in Science Teaching, 30(3), 249-270. https://doi.org/10.1002/tea.3660300304
  • Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies in Mathematics, 67(3), 255-276. https://doi.org/10.1007/s10649-007-9104-2
  • Marton, F. (1981). Phenomenography-Describing conceptions of the world around us. Instructional Science, 10, 177-200. https://doi.org/10.1007/bf00132516
  • Marton, F. y Booth, S. (1997). Learning and awareness. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Muchson, M., Kurniawati, R., Effendy, E. Agusningtyas, D. y Muntholib, M. (2020). Analysis of high school students’ metacognitive knowledge on the topic of solubility and solubility product. AIP Conference Proceedings 2215, 1, 020012. https://doi.org/10.1063/5.0000545
  • Mulford, D. R. y Robinson, W. R. (2002). An inventory for alternate conceptions among first-semester general chemistry students. Journal of Chemical Education, 79(6), 739-744. https://doi.org/10.1021/ed079p739
  • Nakhleh, M. B. (1992). Why some students don’t learn chemistry: Chemical misconceptions. Journal of chemical education, 69(3), 191-196. https://doi.org/10.1021/ed069p191
  • Nakhleh, M. B. (1993). Are our students conceptual thinkers or algorithmic problem solvers? Identifying conceptual students in general chemistry. Journal of Chemical Education, 70(1), 52-55. https://doi.org/10.1021/ed070p52
  • Nakiboğlu, C. y Nakiboğlu, N. (2019). Exploring prospective chemistry teachers’ perceptions of precipitation, conception of precipitation reactions and visualization of the sub-microscopic level of precipitation reactions. Chemistry Education Research and Practice, 20(4), 873-889. https://doi.org/
  • Nurrembern, S. C. y Pickering, M. (1987). Concept learning versus problem solving: is there a difference? Journal of Chemical Education, 64(6), 508-510. https://doi.org/10.1021/ed064p508
  • Onder, I. y Geban, O. (2006). The Effect of Conceptual Change Texts Oriented Instruction on Students’ Understanding of the Solubility Equilibrium Concept. Hacettepe University Journal of Education, 30, 166-173. https://hdl.handle.net/11511/87725
  • Othman, J., Treagust, D. F. y Chandrasegaran, A. L. (2008). An investigation into the relationship between students’ conceptions of the particulate nature of matter and their understanding of chemical bonding. International Journal of Science Education, 30(11), 1531-1550. https://doi.org/10.1080/09500690701459897
  • Pedrosa, M. A. y Dias, M. H. (2000). Chemistry textbook approaches to chemical equilibrium and student alternative conceptions. Chemistry Education Research and Practice, 1(2), 227-236. https://doi.org/10.1039/A9RP90024A
  • Petrucci, R. H., Herring, F. G., Madura, J. D. y Bissonnette, C. (2011). Química General: Principios y aplicaciones modernas (10.ª ed.). Pearson Education, S. A.
  • Pinarbasi, T. y Canpolat, N. (2003). Pre-service teacher trainees’ understanding of solution chemistry concepts. Journal of Chemical Education, 80(11), 1328-1332. https://doi.org/10.1021/ed080p1328
  • Prain, V. y Hand, B. (1999). Students’ perceptions of writing for learning in secondary school science. Science Education, 83(2), 151-162. https://doi.org/10.1002/(sici)1098-237x(199903)83:2<151::aid-sce4>3.0.co;2-s
  • Prieto, T., Blanco, A. y Rodriguez, A. (1989). The ideas of 11 to 14‐year‐old students about the nature of solutions. International Journal of Science Education, 11(4), 451-463. https://doi.org/10.1080/0950069890110409
  • Quílez, J. (2004). Changes in concentration and in partial pressure in chemical equilibria: students’ and teachers’ misunderstandings. Chemistry Education Research and Practice, 5(3), 281-300. https://doi.org/10.1039/B3RP90033A
  • Raviolo, A. (2001). Assessing students’ conceptual understanding of solubility equilibrium. Journal of Chemical Education, 78(5), 629-631. https://doi.org/10.1021/ed078p629
  • Raviolo, A., Schroh, N. T. y Farré, A. (2022). La comprensión de estudiantes de primer año de universidad del concepto de concentración expresada en gramos por litro. Enseñanza de las Ciencias, 40(1), 143-159. https://doi.org/10.5565/rev/ensciencias.3267
  • Rivard, L. P. (1994). A review of writing to learn in science: Implications for practice and research. Journal of Research in Science Teaching, 31, 969-983. https://doi.org/10.1002/tea.3660310910
  • Sawrey, B. A. (1990). Concept learning versus problem solving: revisited. Journal of Chemical Education, 67(3), 253-255. https://doi.org/10.1021/ed067p253
  • Scott, P., Asoko, H. y Leach, J. (2008). Student conceptions and conceptual learning science. En A. K. Abell y N. G. Lederman (Eds.), Handbook of research on science education. Nueva York: Routledge.
  • Setiowati, H., Utomo, S. B. y Ashadi (2018). Students’ misconceptions on solubility equilibrium. Journal of Physics: Conference Series 1022(1), 012035. IOP Publishing. https://doi.org/10.1088/1742-6596/1022/1/012035
  • Stavy, R. (1981). Teaching inverse functions via the concentrations of salt water solution. Archives de Psychologie, 49(191), 267-287.
  • Taber, K. S. (2006). Constructivism’s new clothes: The trivial, the contingent and a progressive research programme into learning of science. Foundations of Chemistry, 8, 189-219. https://doi.org/10.1007/s10698-005-4536-1
  • Tahirsylaj, A., Niebert, K. y Duschl, R. (2015). Curriculum and Didaktik in 21st century: Still divergent or converging? European Journal of Curriculum Studies, 2(2), 262-281. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-62563
  • Tan, K. C. D., Goh, N. K., Chia, L. S. y Treagust, D. F. (2002). Development and application of a two-tier diagnostic instrument to assess high school students’ understanding of inorganic chemistry qualitative analysis. Journal of Research in Science Teaching, 39(4), 283-301. https://doi.org/10.1002/tea.10023
  • Thomas, P. L. y Schwenz, R. W. (1998). College physical chemistry students’ conceptions of equilibrium and fundamental thermodynamics. Journal of Research in Science Teaching, 35(10), 1151-1160. https://doi.org/10.1002/(SICI)1098-2736(199812)35:10<1151::AID-TEA6>3.0.CO;2-K
  • Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International Journal of Science Education, 10(2), 159-169. https://doi.org/10.1080/0950069880100204
  • Tyson, L., Treagust, D. F. y Bucat, R. B. (1999). The complexity of teaching and learning chemical equilibrium. Journal of Chemical Education, 76(4), 554-558. https://doi.org/10.1021/ed076p554
  • Uzuntiryaki, E. y Geban, Ö. (2005). Effect of conceptual change approach accompanied with concept mapping on understanding of solution concepts. Instructional Science, 33(4), 311-339. https://doi.org/10.1007/s11251-005-2812-z
  • Van Driel, J. H., De Vos, W., Verloop, N. y Dekkers, H. (1998). Developing secondary students’ conceptions of chemical reactions: The introduction of chemical equilibrium. International Journal of Science Education, 20(4), 379-392. https://doi.org/10.1080/0950069980200401
  • Viennot, L. (2001). Reasoning in Physics: The part of common sense. Springer Science and Business media. https://doi.org/10.5860/choice.39-4641
  • Vosniadou, S. (2012). Reframing the Classical Approach to Conceptual Change Preconceptions, Misconceptions and Synthetic Models. En B. J. Fraser, K. G. Tobin y C. J. McRobbie (Eds.), Second International Handbook of Science Education (vol. I). Londres: Springer. https://doi.org/10.1007/978-1-4020-9041-7
  • Vosniadou, S. (2019). The development of students’ understanding of science. Frontiers in Education, 4(32). https://doi.org/10.3389/feduc.2019.00032
  • Vygotsky, L. S. (1978). Interaction between learning and development. En M. Gauyain y M. Cole (Eds.), Readings on the development of children (pp. 34-40). Scientific American Books.
  • Wandersee, J. H., Mintzes, J. J. y Novak, J. D. (1994). Research on alternative conceptions in Science. En D. L. Gabel (Ed.), Handbook of Research on Science teaching and Learning (pp. 177-210). Macmillan Publications.
  • Wheeler, A. E. y Kass, H. (1978). Student misconceptions in chemical equilibrium. Science Education, 62(2), 223-232. https://doi.org/10.1002/sce.3730620212