Fuzzy Airflow-Based Active Structural Control of Integrated Oscillating Water Columns for the Enhancement of Floating Offshore Wind Turbine Stabilization
-
1
Universidad del País Vasco/Euskal Herriko Unibertsitatea
info
Universidad del País Vasco/Euskal Herriko Unibertsitatea
Lejona, España
ISSN: 1099-114X, 0363-907X
Año de publicación: 2023
Volumen: 2023
Páginas: 1-23
Tipo: Artículo
Otras publicaciones en: International Journal of Energy Research
Resumen
This paper presents the modeling and stabilization of a floating offshore wind turbine (FOWT) using oscillating water columns (OWCs) as active structural control. The novel concept of this work is to design a new FOWT platform using the ITI Energy barge with incorporated OWCs at opposite sides of the tower, in order to alleviate the unwanted system oscillations. The OWCs provide the necessary opposing forces to the bending moment of the wind upon the tower and the waves upon the floating barge platform. However, the forces have to be synchronized with the tilting of the system which will be ensured by the proposed fuzzy airflow control strategy. Using the platform pitch angle, the fuzzy airflow control opens the valve of one side and closes the valve of the other side accordingly. Results of simulation in comparison with the standard FOWT and a PID-based airflow control show the efficiency of the fuzzy airflow control and its superiority to decrease the platform pitching and the top tower fore-aft displacement.
Información de financiación
Financiadores
-
University of the Basque Country
- MAZAM22/15
- IT1555-22
Referencias bibliográficas
- 10.1016/j.enconman.2020.113267
- 10.1016/j.apenergy.2019.113980
- GWEC, (2020), Global Offshore Wind Report 2020
- 10.1051/rees/2020003
- 10.1016/j.energy.2017.02.033
- J. Lee, (2019), GWEC Global Wind Report 2019
- 10.1016/j.rser.2019.01.012
- 10.1016/j.jclepro.2020.124462
- 10.1016/j.rser.2020.110414
- GWEC, (2021), Global Offshore Wind Report 2021
- 10.1016/j.renene.2018.04.061
- ASAEIndustrialising floating offshore wind2021Stavanger, NorwayTech. Rep. Floating wind, Equinor A.S.Ahttps://www.equinor.com/energy/floating-wind
- Floating OffshoreWind Farmsch, (2016), Floating OffshoreWind Platforms
- 10.1016/j.renene.2021.08.009
- R. Pool, (2010), Engineering & Technology, 5, pp. 46
- 10.1016/j.oceaneng.2020.107126
- 10.1063/1.3435339
- 10.1063/1.4796197
- J. Jonkman, (2007)
- F. Beyer, pp. 367
- 10.1016/j.oceaneng.2021.109015
- A. Robertson, pp. 443
- J. Jonkman, (2007), Dynamics modeling and loads analysis of an offshore floating wind turbine, 10.2172/921803
- J. Jonkman, (2010), Quantitative comparison of the responses of three floating platforms
- 10.1260/0309-524X.33.6.541
- 10.1098/rsta.2014.0069
- 10.1016/j.joes.2022.07.004
- 10.1016/S0029-8018(99)00050-5
- 10.1002/we.426
- 10.24084/repqj10.637
- 10.1016/j.jsv.2017.08.050
- 10.1016/j.apenergy.2020.114998
- 10.1016/j.oceaneng.2018.12.046
- 10.3390/en13153991
- 10.1016/j.joes.2015.12.006
- J. Kluger, pp. 577
- 10.1016/j.joes.2017.09.004
- 10.1109/oses.2019.8867345
- 10.1016/j.renene.2020.01.078
- 10.1016/j.joes.2022.05.008
- 10.1016/j.ifacol.2016.10.434
- 10.4995/riai.2021.16111
- 10.1109/TIE.2015.2465894
- 10.1155/2014/968384
- 10.3390/math9121364
- 10.3390/math9050475
- 10.3390/electronics8010070
- 10.3390/s20051352
- 10.3390/app10134628
- VijfhuizenW.Design of a Wind and Wave Power Barge, [M.S. thesis]2006Department of Naval Architecture and Mechanical Engineering, Universities of Glasgow and Strathclyde
- J. Jonkman, pp. 1
- 10.1109/TCST.2013.2260825
- 10.1016/j.mechatronics.2010.11.007
- 10.1016/j.rser.2014.09.032
- 10.1115/omae2011-49014
- 10.1016/j.engstruct.2018.09.063
- 10.1177/1475090216642466
- 10.1109/21.260670
- 10.1109/21.52551
- 10.1109/iecon.2002.1187512
- A. Sadollah, (2018), Fuzzy logic based in optimization methods and control systems and its applicationsch. Introductory Chapter: Which Membership Function is Appropriate in Fuzzy System?