Representar e intervenir con tecnomundos virtuales: simulaciones, ficciones y controversias

  1. José Luis Granados Mateo
  2. Javier Echeverría Ezponda
Journal:
Argumentos de razón técnica: Revista española de ciencia, tecnología y sociedad, y filosofía de la tecnología

ISSN: 1139-3327

Year of publication: 2019

Issue: 22

Pages: 96-119

Type: Article

DOI: 10.12795/ARGUMENTOS/2019.I22.04 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Argumentos de razón técnica: Revista española de ciencia, tecnología y sociedad, y filosofía de la tecnología

Abstract

Computer simulations are currently the main virtual testing field within several scientific disciplines. It's a distinctive practice with respect to the Representing and Intervening proposed by Hacking in 1983. For, a computer simulation isn't solely a calculation tool; it also acts as a research methodology in itself. Through them, virtual technoworlds and their objects of study can be recreated—thereby granting access to experimentally inaccessible natural systems (i.e., climate change or astrophysical phenomena). This article analyzes the tenability of considering these simulations as objects of dispute, superimposed on the debate of scientific realism. To this end, we start with the characterization of Hacking by adopting a praxeological perspective, and then focusing on simulations with causal explanatory potential. Following this, the applicability of the arguments of intervention, as well as the multiple correspondence of representations, are evaluated. From this data, the article concludes with an analysis of the analogies and differences between the practice of observing by means of a microscope and simulating by means of computational technology.

Bibliographic References

  • Broncano, F. (2000), Mundos artificiales, México: Editorial Paidós.
  • Colburn, T, Shute, G. (2007), “Abstraction in Computer Science”, Minds and Machines, 17(2):169-184.
  • Durán (2018), Computer Simulations in Science and Engineering: Concepts, practices, perspectives. Stuttgart: Springer. Durán, J.M., Formanek, N. (2019), “Grounds for Trust: Essential Epistemic Opacity and Computational Reliabilism”, en Minds and Machines 28:645-666.
  • Echeverría, J. (2018), The Philosophy of Technoworlds and Technopersons. En B. Laspra y J.A. López Cerezo (Ed.), Spanish Philosophy of Technology (Part IV). Switzerland.: Springer.
  • Echeverría, J. (2001), “Virtualidad y grados de realidad”, en Daimon Revista Internacional de Filosofía, (24), pp. 23-30.
  • Echeverría, J. (1998), “Similaridades, isomorfismos y homeomorfismos entre representaciones científicas”, en Theoria, 13(1):89-112.
  • Giere, R. (2009), “Why Scientific Models Should Not be Regarded as Works of Fiction”, en Mauricio Suárez (ed.): Fictions in Science. Philosophical Essays on Modelling and Idealisation, London: Routledge, 248–258.
  • Giri, L. Miguel, H. (2018), “El modelo de simulación como generador de explicaciones causales”, en Theoria 33/1: 111-128. Graham Kennedy, A. (2012), “A non representationalist view of model explanation”, en Studies in History and Philosophy of Science, Vol 43, Issue 2, pp. 326-332.
  • Hacking, I. (2013). “Ensayo preliminar” en La estructura de las revoluciones científicas (Kuth, T.), México: Fondo de Cultura Económica.
  • Hacking, I. (1999), “The Self-Vindication of the Laboratory Sciences”, en Pickering, A. (Ed.), Science as practice and culture, Chicago: University of Chicago Press. 29-64.
  • Hacking, I. (1992). “Do Thought Experiments have a Life of Their Own?” PSA (Volume 2), A. Fine, M. Forbes and K. Okruhlik (eds.), East Lansing: The Philosophy of Science Association, 302–10.
  • Hacking, I. (1988), “On the Stability of the Laboratory Sciences,” The Journal of Philosophy, 85: 507–15.
  • Hacking, I. (1983), Representing and Intervening. Cambridge: Cambridge University Press.
  • Hacking, I. (1981), “Do We See Through a Microscope?”, Pacific Philosophical Quarterly, 63: 305-322.
  • Hartmann, S. (1996), “The World as a Process: Simulations in the Natural and Social Sciences”, en R. Hegselmann, et al. (eds.), Modelling and Simulation in the Social Sciences from the Philosophy of Science Point of View, Dordrecht: Kluwer, 77–100.
  • Hughes, R., 1999. “The Ising Model, Computer Simulation, and Universal Physics,” in M. Morgan and M. Morrison (eds.), Models as Mediators, Cambridge: Cambridge University Press.
  • Humphreys, P. (2019), Philosophical Papers, New York: Oxford University Press.
  • Humphreys, P. (2011) “What are Data About?”, en Computer Simulations and the Changing Face of Scientific Experimentation (Ed. Durán J.M., Arnold, E.), 12-29.
  • Humphreys, P. (2009) “The Philosophical Novelty of Computer Simulation Methods”, en Synthese, 169(3): 615-626.
  • Humphreys, P. (2004), Extending Ourselves: Computational Science, Empiricism, and Scientific Method. New York: Oxford University Press.
  • Humphreys, P. (1990). “Computer Simulation,” in A. Fine, M. Forbes, and L. Wessels (eds.), PSA 1990 (Volume 2), East Lansing, MI: The Philosophy of Science Association, 497–506.
  • Morrison, M (2015), Reconstructing Reality: Models, Mathematics and Simulations. New York: Oxford University Press.
  • Moulines, U. (1987), Exploraciones metacientíficas, Madrid: Alianza.
  • Parker, W. (2009), “Does Matter Really Matter? Computer Simulations, Experiments and Materiality”, Synthese, 169(3): 483-96. Peschard, I. (2013) “Modeling and Experimenting”. Models, Simulations, and Representations, 9.
  • Quéau, P. (1995), Lo virtual: Virtudes y vértigos, Barcelona: Editorial Paidós.
  • Quintanilla, M.A. (1985), “El concepto de verdad parcial”, en Theoria, nº1, pp. 129-141.
  • Teller, P. (2009), “Fictions, Fictionalization, and Thruth in Science”, in Mauricio
  • Suárez (ed.): Fictions en Science. Philosophical Essays on Modelling and Idealisation, London: Routledge, 235-247.
  • Turner, R., Angius, N. (2019), “The Philosophy of Computer Science”, The Stanford Encyclopedia of Philosophy (Spring Edition), Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/spr2019/entries/computer-science/>.
  • Weirich, P. (2011), “The explanatory power of Models and Simulations: A Philosophical Exploration” en Simulation and Gaming, 42: 149-170.
  • Weirich, P. (2013), “Models as Partial Explanations” en Andreas Tolk (Ed.) Ontology, Epistemology, and Teleology for Modelling and Simulation: A Philosophical Foundations for Intelligent M&S Applications. 105-119, Berlin: SpringerVerlag. Winsberg, E. (2019), “Computer Simulations in Science”, The Stanford Encyclopedia of Philosophy (Spring Edition), Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/sum2018/entries/simulations-science/>.
  • Weirich, P. (2010), Science in the Age of Computer Simulation. U.S.A: The Universityof Chicago Press.
  • Weirich, P. (2006), “Models of Success Versus the Success of Models: Reliability without Truth”, en Synthese 152 (1): 1-19.
  • Winsberg, E., Mirza, A. (2018), Success and Scientific Realism: Considerations from the Philosophy of Simulation. En J. SAATSI (Ed.), The Routledge Handbook of Scientific Realism (Part III, 20). UK.: Routledge.