Simulation of a flat solar collector with thermal storage for drying food

  1. Rincón Quintero, Arly Darío
  2. del Portillo Valdés, Luis Alfonso 1
  3. Sandoval Rodriguez, Camilo Leonardo 2
  4. Tarazona Romero, Brayan Eduardo
  5. Rondón Romero, Wilmar Leonardo 2
  1. 1 Universidad del País Vasco UPV/EHU
  2. 2 Unidades Tecnológicas de Santander
Revista:
Scientia et Technica

ISSN: 0122-1701

Año de publicación: 2023

Volumen: 28

Número: 1

Páginas: 15-22

Tipo: Artículo

DOI: 10.22517/23447214.24835 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Scientia et Technica

Resumen

Esta investigación aborda la simulación numérica de un fluido de trabajo, utilizando el software especializado SolidWorks Flow Simulation, analizando el comportamiento de un aire de secado en un colector solar plano con almacenamiento de energía térmica. Además, uno de los principales centros de estudio computacional es la relación entre caudal, temperatura del aire a la salida del colector y eficiencia; Este estudio permite a los investigadores una visión de los principios del diseño de estas tecnologías, especialmente si se enfoca en el secado de alimentos. A continuación, se hace una propuesta sobre los requisitos a tener en cuenta para el dimensionamiento de los colectores en función de los requisitos del producto a secar. Entre los resultados obtenidos, se establece que un colector correctamente diseñado y bajo un flujo de aire variable, en función de la intensidad de la irradiación en coordenadas y ubicación específicas, puede alcanzar eficiencias cercanas al 30% con temperaturas cercanas a los 60 ° C, siendo ideal para inyectar este fluido en una cámara de secado, donde se encuentra disponible el alimento a deshidratar. Para la selección del volumen del material para almacenamiento de energía, se recomienda tomar como base las temperaturas de fusión, con un flujo de aire constante, es normal que, dentro del sistema, la temperatura varíe dependiendo de la posición, por lo tanto, recomienda la aplicación de materiales con diferentes temperaturas de fusión, los cuales se encuentran estratégicamente ubicados dentro del tanque de almacenamiento.

Referencias bibliográficas

  • Citas [1] L. Bennamoun, “Reviewing the experience of solar drying in Algeria with presentation of the different design aspects of solar dryers,” Renew. Sustain. Energy Rev., vol. 15, no. 7, pp. 3371–3379, 2011.
  • [2] P. Singh, V. Shrivastava, and A. Kumar, “Recent developments in greenhouse solar drying: A review,” Renew. Sustain. Energy Rev., vol. 82, no. September 2017, pp. 3250–3262, 2018.
  • [3] Y. Mohana, R. Mohanapriya, T. Anukiruthika, K. S. Yoha, J. A. Moses, and C. Anandharamakrishnan, “Solar dryers for food applications: Concepts, designs, and recent advances,” Sol. Energy, vol. 208, pp. 321–344, 2020.
  • [4] A. J. Perea-Moreno, A. Juaidi, and F. Manzano-Agugliaro, “Solar greenhouse dryer system for wood chips improvement as biofuel,” J. Clean. Prod., vol. 135, pp. 1233–1241, 2016.
  • [5] M. Kumar, S. K. Sansaniwal, and P. Khatak, “Progress in solar dryers for drying various commodities,” Renew. Sustain. Energy Rev., vol. 55, pp. 346–360, 2016.
  • [6] H. El Hage, A. Herez, M. Ramadan, H. Bazzi, and M. Khaled, “An investigation on solar drying: A review with economic and environmental assessment,” Energy, vol. 157, pp. 815–829, 2018.
  • [7] S. N. Ugwu, O. Ojike, W. I. Okonkwo, E. Okafor, B. O. Ugwuishiwu, and E. A. Echiegu, “Evaluation studies of a mixed mode solar kiln with phase change material and distributed-type solar kiln,” Case Stud. Therm. Eng., vol. 22, p. 100748, 2020.
  • [8] D. V. N. Lakshmi, P. Muthukumar, and P. K. Nayak, “Experimental investigations on active solar dryers integrated with thermal storage for drying of black pepper,” Renew. Energy, vol. 167, pp. 728–739, 2021.
  • [9] G. Pirasteh, R. Saidur, S. M. A. Rahman, and N. A. Rahim, “A review on development of solar drying applications,” Renew. Sustain. Energy Rev., vol. 31, pp. 133–148, 2014.
  • [10] N. L. Panwar, S. C. Kaushik, and S. Kothari, “A review on energy and exergy analysis of solar dying systems,” Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 2812–2819, 2012.
  • [11] M. R. Nukulwar and V. B. Tungikar, “Thin-Layer Mathematical Modeling of Turmeric in Indirect Natural Conventional Solar Dryer,” J. Sol. Energy Eng., vol. 142, no. 4, Jan. 2020.
  • [12] C. Ramirez, M. Palacio, and M. Carmona, “Reduced Model and Comparative Analysis of the Thermal Performance of Indirect Solar Dryer with and without PCM,” Energies , vol. 13, no. 20. 2020.
  • [13] S. Vijayan, T. V Arjunan, A. Kumar, and M. M. Matheswaran, “Experimental and thermal performance investigations on sensible storage based solar air heater,” J. Energy Storage, vol. 31, p. 101620, 2020.
  • [14] A. Khouya, “Effect of regeneration heat and energy storage on thermal drying performance in a hardwood solar kiln,” Renew. Energy, vol. 155, pp. 783–799, 2020.
  • [15] M. P. Camas-Nafate, P. Alvarez-Gutiérrez, E. Valenzuela-Mondaca, R. Castillo-Palomera, and Y. del C. Perez-Luna, “Improved agricultural products drying through a novel double collector solar device,” Sustain., vol. 11, no. 10, 2019.
  • [16] S. Tiwari and G. N. Tiwari, “Thermal analysis of photovoltaic thermal integrated greenhouse system (PVTIGS) for heating of slurry in potable biogas plant: An experimental study,” Sol. Energy, vol. 155, pp. 203–211, 2017.
  • [17] S. Dhanushkodi, V. H. Wilson, and K. Sudhakar, “Design and thermal performance of the solar biomass hybrid dryer for cashew drying,” Facta Univ. Mech. Eng., vol. 12, no. 3, pp. 277–288, 2014.
  • [18] S. M. Shalaby and M. A. Bek, “Experimental investigation of a novel indirect solar dryer implementing PCM as energy storage medium,” Energy Convers. Manag., vol. 83, pp. 1–8, 2014.
  • [19] Z. Azaizia, S. Kooli, A. Elkhadraoui, I. Hamdi, and A. A. Guizani, “Investigation of a new solar greenhouse drying system for peppers,” Int. J. Hydrogen Energy, vol. 42, no. 13, pp. 8818–8826, 2017.
  • [20] A. G. Ferreira, L. M. Gonçalves, and C. B. Maia, “Solar drying of a solid waste from steel wire industry,” Appl. Therm. Eng., vol. 73, no. 1, pp. 104–110, 2014.
  • [21] M. Iranmanesh, H. Samimi Akhijahani, and M. S. Barghi Jahromi, “CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system,” Renew. Energy, vol. 145, pp. 1192–1213, 2020.
  • [22] G. M. da Silva, A. G. Ferreira, R. M. Coutinho, and C. B. Maia, “Thermodynamic analysis of a sustainable hybrid dryer,” Sol. Energy, vol. 208, pp. 388–398, 2020.
  • [23] Z. Hu, S. Zhang, W. Chu, W. He, C. Yu, and H. Yu, “Numerical Analysis and Preliminary Experiment of a Solar Assisted Heat Pump Drying System for Chinese Wolfberry,” Energies , vol. 13, no. 17. 2020.
  • [24] A. A. Ananno, M. H. Masud, P. Dabnichki, and A. Ahmed, “Design and numerical analysis of a hybrid geothermal PCM flat plate solar collector dryer for developing countries,” Sol. Energy, vol. 196, no. April 2019, pp. 270–286, 2020.
  • [25] R. O. Lamidi, L. Jiang, P. B. Pathare, Y. D. Wang, and A. P. Roskilly, “Recent advances in sustainable drying of agricultural produce: A review,” Appl. Energy, vol. 233–234, no. September 2018, pp. 367–385, 2019.
  • [26] T. A. Yassen and H. H. Al-Kayiem, “Experimental investigation and evaluation of hybrid solar/thermal dryer combined with supplementary recovery dryer,” Sol. Energy, vol. 134, pp. 284–293, 2016.
  • [27] M. Sandali, A. Boubekri, D. Mennouche, and N. Gherraf, “Improvement of a direct solar dryer performance using a geothermal water heat exchanger as supplementary energetic supply. An experimental investigation and simulation study,” Renew. Energy, vol. 135, pp. 186–196, 2019.
  • [28] D. Kong, Y. Wang, M. Li, V. Keovisar, M. Huang, and Q. Yu, “Experimental study of solar photovoltaic/thermal (PV/T) air collector drying performance,” Sol. Energy, vol. 208, pp. 978–989, 2020.
  • [29] B. Lamrani and A. Draoui, “Modelling and simulation of a hybrid solar-electrical dryer of wood integrated with latent heat thermal energy storage system,” Therm. Sci. Eng. Prog., vol. 18, p. 100545, 2020.
  • [30] A. Zoukit, H. El Ferouali, I. Salhi, S. Doubabi, and N. Abdenouri, “Takagi Sugeno fuzzy modeling applied to an indirect solar dryer operated in both natural and forced convection,” Renew. Energy, vol. 133, pp. 849–860, 2019.
  • [31] A. Reyes, A. Mahn, and F. Vásquez, “Mushrooms dehydration in a hybrid-solar dryer, using a phase change material,” Energy Convers. Manag., vol. 83, pp. 241–248, 2014.
  • [32] W. Wu et al., “A novel composite PCM for seasonal thermal energy storage of solar water heating system,” Renew. Energy, vol. 161, pp. 457–469, 2020.
  • [33] P. Bose and V. A. Amirtham, “A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material,” Renew. Sustain. Energy Rev., vol. 65, pp. 81–100, 2016.
  • [34] M. Parsazadeh and X. Duan, “Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit,” Appl. Energy, vol. 216, pp. 142–156, 2018.
  • [35] S. Kahwaji, M. B. Johnson, A. C. Kheirabadi, D. Groulx, and M. A. White, “A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications,” Energy, vol. 162, pp. 1169–1182, 2018.
  • [36] E. Bellos and C. Tzivanidis, “Investigation of a nanofluid-based concentrating thermal photovoltaic with a parabolic reflector,” Energy Convers. Manag., vol. 180, pp. 171–182, 2019.