The magmatism of Atienza, NW Iberian Chain, Spainage, origin and architecture of the magmatic plumbing system

  1. Urbez Majarena 1
  2. Carlos Galé 1
  3. José Julián Esteban 2
  4. Marceliano Lago 1
  5. Andrés Gil Imaz 1
  1. 1 Universidad de Zaragoza
    info

    Universidad de Zaragoza

    Zaragoza, España

    ROR https://ror.org/012a91z28

  2. 2 Universidad del País Vasco, UPV/EHU
Revista:
Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Año de publicación: 2023

Volumen: 49

Número: 1

Páginas: 47-69

Tipo: Artículo

DOI: 10.1007/S41513-023-00206-W DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of iberian geology: an international publication of earth sciences

Resumen

En el sector de Atienza (NW de la Cordillera Ibérica, España) afora un sill de más de 15 km2 , varios diques de hasta 5 m de espesor y un depósito volcanoclástico. Todos ellos están constituidos por andesitas porfídicas calco-alcalinas con fenocristales de plagioclasa, anfíbol, biotita, granate y ortopiroxeno. La edad de este magmatismo, en base a las relaciones U-Pb de los circones que contiene, es de 290 ± 3 Ma (SakmarienseArtinskiense, Cisuraliense). El estudio composicional y geotermobarométrico de los cristales de anfíbol indica que su cristalización se produjo a diferentes profundidades entre 31 y 16 km e involucró diversos procesos de recarga magmática y cristalización fraccionada. El ascenso del magma produjo la desestabilización de los cristales de anfíbol, su reemplazamiento por biotita y la formación de coronas microcristalinas. La composición isotópica y de elementos traza de estas rocas indica una fuerte infuencia cortical en el origen del magma. Los procesos de fusión de corteza fueron favorecidos por el calor generado por el ascenso astenosférico tras el adelgazamiento y delaminación litosférica que tuvieron lugar a fnales de la Orogenia Varisca.

Información de financiación

Financiadores

Referencias bibliográficas

  • Álvaro, J. J., Bauluz, B., Gil-Imaz, A., & Ubide, T. (2018). 40Ar/39Ar chronological constraints on syn-and post-Variscan biotite porphyroblasts from the Iberian Chains, NE Spain. Journal of Iberian Geology, 44(4), 655–670. https://doi.org/10.1007/ s41513-018-0065-3
  • Álvaro, M. (1991). Tectónica. In: Instituto Tecnológico GeoMinero de España (Ed), Mapa Geológico de España 1:200.000. Hoja: 40 (7–5), Daroca (pp. 177–204).
  • Ancochea, E., Hernán, F., & Vegas, R. (1981). Un marco tectónico para el Vulcanismo de Atienza (Provincia de Guadalajara). Cuadernos Geología Ibérica, 7, 421–430.
  • Aparicio, A., & García-Cacho, L. (1984). Quimismo de los principales componentes minerales de las rocas volcánicas paleozoicas del área de Atienza (Provincia de Guadalajara). Boletín Geológico y Minero, 95(1), 80–89.
  • Bea, F., Montero, P., Anbar, M. A., Molina, J. F., & Scarrow, J. H. (2011). The Bir Safsaf Precambrian inlier of South West Egypt revisited. A model for ~ 1.5 Ga TDM late Pan-African granite generation by crustal reworking. Lithos, 125(3–4), 897–914. https://doi.org/10.1016/j.lithos.2011.05.004
  • Bea, F., Montero, P., Talavera, C., Abu Anbar, M., Scarrow, J. H., Molina, J. F., & Moreno, J. A. (2010). The palaeogeographic position of Central Iberia in Gondwana during the Ordovician: Evidence from zircon chronology and Nd isotopes. Terra Nova, 22(5), 341–346. https://doi.org/10.1111/j.1365-3121.2010. 00957.x
  • Buckley, V. J. E., Sparks, R. S. J., & Wood, B. J. (2006). Hornblende dehydration reactions during magma ascent at Soufrière Hills Volcano, Montserrat. Contributions to Mineralogy and Petrology, 151(2), 121–140. https://doi.org/10.1007/s00410-005-0060-5
  • Bushmin, S. A., & Glebovitsky, V. A. (2008). Scheme of mineral facies of metamorphic rocks. Geology of Ore Deposits, 50(8), 659–669. https://doi.org/10.1134/S1075701508080011
  • Calvín-Ballester, P., & Casas, A. (2013). Folded Variscan thrusts in the Herrera unit of the Iberian Range (NE Spain). Geological Society of London, Special Publication, 394(1), 39–52. https://doi.org/ 10.1144/SP394.3
  • Cashman, K., & Blundy, J. (2013). Petrological cannibalism: The chemical and textural consequences of incremental magma body growth. Contributions to Mineralogy and Petrology, 166(3), 703– 729. https://doi.org/10.1007/s00410-013-0895-0
  • Castro, A., Douce, A. E. P., Corretgé, L. G., De La Rosa, J. D., ElBiad, M., & El-Hmidi, H. (1999). Origin of peraluminous granites and granodiorites, Iberian massif, Spain: An experimental test of granite petrogenesis. Contributions to Mineralogy and Petrology, 135(2), 255–276. https://doi.org/10.1007/s004100050511
  • Conte, J. C., Gascón, F., Lago San José, M., & Carls, P. (1987). Materiales stephano-pérmicos en la fosa de Fombuena, Provincia de Zaragoza. Boletín geológico y minero, 98(4), 460-470
  • Fernández-Suárez, J., Dunning, G. R., Jenner, G. A., & GutiérrezAlonso, G. (2000). Variscan collisional magmatism and deformation in NW Iberia: Constraints from U-Pb geochronology of granitoids. Journal of the Geological Society, 157(3), 565–576. https://doi.org/10.1144/jgs.157.3.565
  • Gabaldón, V., Ruiz, P., Bascones, F., Martínez, F., & González, F. (1978). Mapa geológico de España 1:50.000, hoja nº 433 (Atienza) y memoria. IGME, Madrid, 45 p.
  • Gorini, A., Ridolf, F., Piscaglia, F., Taussi, M., & Renzulli, A. (2018). Application and reliability of calcic amphibole thermobarometry as inferred from calc-alkaline products of active geothermal areas in the Andes. Journal of Volcanology and Geothermal Research, 358, 58–76. https://doi.org/10.1016/j.jvolgeores.2018.03.018
  • Green, T. H. (1992). Experimental phase equilibrium studies of garnetbearing I-type volcanics and high-level intrusives from Northland, New Zealand. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1–2), 429–438. https://doi.org/ 10.1017/S0263593300008105
  • Gutiérrez-Alonso, G., Fernández-Suárez, J., Jefries, T. E., Johnston, S. T., Pastor-Galán, D., Murphy, J. B., Piedad-Franco, M., & Gonzalo, J. C. (2011). Diachronous post-orogenic magmatism within a developing orocline in Iberia European,Variscides. Tectonics. https://doi.org/10.1029/2010TC002845
  • Harangi, S. Z., Downes, H., Kósa, L., Szabo, C. S., Thirlwall, M. F., Mason, P. R. D., & Mattey, D. (2001). Almandine garnet in calcalkaline volcanic rocks of the Northern Pannonian Basin (Eastern–Central Europe): Geochemistry, petrogenesis and geodynamic implications. Journal of Petrology, 42(10), 1813–1843. https:// doi.org/10.1093/petrology/42.10.1813
  • Hernán, E., Perni, A., & Ancochea, E. (1981). El vulcanismo del área de Atienza. Estudios Geológicos, 37, 13–25.
  • Hernando, S. (1980). Mapa geológico del Pérmico y Triásico de la región Ayllón-Atienza. Cuadernos De Geología Ibérica, 6, 21–54.
  • Hernando, S., Schott, J. J., Thuizat, R., & Montigny, R. (1980). Âge des andésites et des sediments interstratifés dans la region d’Atienza (Espagne). Etude stratigraphique, géochronologique et paléomagnétique. Sciences Géologiques, bulletins et mémoires, 32(2), 119–128.
  • Jackson, S. E., Pearson, N. J., Grifn, W. L., & Belousova, E. A. (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1–2), 47–69. https://doi.org/10.1016/j. chemgeo.2004.06.017
  • Julivert, M., & Martínez, F. J. (1983). Estructura de conjunto y visión global de la Cordillera Herciniana. In IGME (ed), Libro Jubilar JM Ríos, Geología de España. (pp. 612–630). IGME.
  • Lago, M., Arranz, E., Pocoví, A., Galé, C., & Gil-Imaz, A. (2004). Lower Permian magmatism of the Iberian Chain Central Spain, Ant Its Relationship to Extensional Tectonics. Geological Society of London Special Publications, 223(1), 465–490. https://doi.org/ 10.1144/GSL.SP.2004.223.01.20
  • Lago, M., Gil, A., Arranz, E., Galé, C., & Pocoví, A. (2005). Magmatism in the intracratonic Central Iberian basins during the Permian: Palaeoenvironmental consequences. Palaeogeography, Palaeoclimatology, Palaeoecology, 229(1), 83–103. https://doi. org/10.1016/j.palaeo.2005.06.032
  • Le Bas, M. L., Maitre, R. L., Streckeisen, A., Zanettin, B., IUGS Subcommission on the Systematics of Igneous Rocks. (1986). A chemical classifcation of volcanic rocks based on the total alkalisilica diagram. Journal of Petrology, 27(3), 745–750.
  • Leake et al. (1997). Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35, 219-246
  • Lemirre, B., Cochelin, B., Duchêne, S., de Saint Blanquat, M., & Poujol, M. (2019). Origin and duration of late orogenic magmatism in the foreland of the Variscan belt (Lesponne—Chiroulet—Neouvielle area, french Pyrenees). Lithos, 336, 183–201. https://doi. org/10.1016/j.lithos.2019.03.037
  • López-Gómez, J., Alónso-Azcárate, J., Arche, A., et al. (2019). Permian-triassic rifting stage. LópezGómez, J., Alonso-Azcárate, J., Arche, A., Arribas, J., Barrenechea, J. F., Borruel-Abadía, V., & Viseras, C. (2019). Permiantriassic rifting stage. In C. Quesada & J.T. Oliveira (Eds.), The geology of Iberia: a geodynamic approach (pp. 29–112). Springer, Cham. https://doi.org/10.1007/978-3-030-11295-0_3
  • Ludwig, K. R. (2003). User´s manual for Isoplot 3.0 a Geochronological toolkit for Excel. Berkeley Geochronological Center Special Publication 4 (71 pp.).
  • Madinabeitia, S. G., Lorda, M. S., & Ibarguchi, J. G. (2008). Simultaneous determination of major to ultratrace elements in geological samples by fusion-dissolution and inductively coupled plasma mass spectrometry techniques. Analytica Chimica Acta, 625(2), 117–130. https://doi.org/10.1016/j.aca.2008.07.024
  • Majarena, U., Galé, C., Lago, M., & Gil-Imaz, A. (2021). Los granates del magmatismo Cisuraliense en la Cordillera Ibérica: Origen, evolución y convergencia composicional a escala de cadena. GeoTemas, 18, 436–439.
  • Majarena, U., Galé, C., Lago, M., Gil-Imaz, A., Ubide, T., & Larrea, P. (2015a). Los granates de las andesitas de Atienza: Consideraciones sobre su origen. Macla, 16, 89–90.
  • Majarena, U., Galé, C., Lago, M., J. J. Esteban, E., de Madinabeitia, S. G., & Imaz, A. G. (2018). Edad Pb-Pb (LA-ICP-Ms) de rocas ígneas postvariscas en la Sierra de Albarracín (Teruel-Guadalajara). Teruel: Revista del Instituto de Estudios Turolenses, 95(1), 7–19.
  • Majarena, U., Gil-Imaz, A., Lago, M., & Galé, C. (2015b). El magmatismo pérmico del sector de Atienza (extremo W de la Cordillera Ibérica): Nuevos datos petro-estructurales para su interpretación genética. Geogaceta, 58, 63–66.
  • Majarena, U., Lago, M., Galé, C., Esteban, J. J., García de Madinabeitia, S., & Gil-Imaz, A. (2017). El magmatismo Pérmico Inferior de la Sierra de Pardos (Rama Aragonesa de la Cordillera Ibérica, Zaragoza): Petrología y geoquímica. Geogaceta, 61, 111–114.
  • Martínez Catalán, J. R., Martínez Poyatos, D. y Bea, F. (2004). In J. A. Vera (Ed), Geología de España (pp. 68–69). SGE-IGME, Madrid.
  • McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120(3–4), 223–253.
  • Meinhold, G., Kostopoulos, D., Frei, D., Himmerkus, F., & Reischmann, T. (2010). U-Pb LA-SF-ICP-MS zircon geochronology of the Serbo-Macedonian Massif, Greece: Palaeotectonic constraints for Gondwana-derived terranes in the Eastern Mediterranean. International Journal of Earth Sciences, 99(4), 813–832. https://doi.org/10.1007/s00531-009-0425-5
  • Montero, P., Talavera, C., & Bea, F. (2017). Geochemical, isotopic, and zircon (U-Pb, O, Hf isotopes) evidence for the magmatic sources of the volcano-plutonic Ollo de Sapo Formation, Central Iberia. Geologica Acta, 15(4), 245–260. https://doi.org/10.1344/Geolo gicaActa2017.15.4.1
  • Moreno-Ventas, I., Rogers, G., & Castro, A. (1995). The role of hybridization in the genesis of Hercynian granitodis in the gredos massif, Spain: Inferences from Sr-Nd isotopes. Contributions to Mineralogy and Petrology, 120(2), 137–149.
  • Navidad, M. (1983). Vulcanismo Permo-Carbonífero en la Cordillera Ibérica (Rama Occidental). Fundación Juan March, Serie Universitaria 202(63).
  • Orejana, D., Villaseca, C., & Kristofersen, M. (2020). Geochemistry and geochronology of mafc rocks from the Spanish Central System: Constraints on the mantle evolution beneath central Spain. Geoscience Frontiers, 11(5), 1651–1667. https://doi.org/10. 1016/j.gsf.2020.01.002
  • Orejana, D., Villaseca, C., Pérez-Soba, C., López-García, J. A., & Billström, K. (2009). The Variscan gabbros from the Spanish Central System: A case for crustal recycling in the sub-continental lithospheric mantle? Lithos, 110(1–4), 262–276. https://doi.org/10. 1016/j.lithos.2009.01.003
  • Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508–2518. https://doi.org/10.1039/c1ja10172b
  • Peccerillo, A., & Taylor, S. R. (1976). Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1), 63–81.
  • Pereira, M. F., Castro, A., Chichorro, M., Fernández, C., Diaz-Alvarado, J., Martí, J., & Rodríguez, C. (2014). Chronological link between deep-seated processes in magma chambers and eruptions: Permo-Carboniferous magmatism in the core of Pangaea (Southern Pyrenees). Gondwana Research, 25(1), 290–308. https://doi. org/10.1016/j.gr.2013.03.009
  • Pérez-Estaún, A., Bea, F., Bastida, F., Marcos, A., Martínez-Catalán, J. R., Martínez-Poyatos, D., Arenas, R., Díaz-García, F., Azor, A., Simancas, J. F., & González-Lodeiro, F. (2004). La Cordillera Varisca europea: El macizo Ibérico. In: Geología de España (pp. 21–25). SGE-IGME, Madrid.
  • Pérez-Mazarío, F. (1990). Estratigrafía de la unidad inferior del Pérmico del sector Atienza-Ujados (Borde Noreste del Sistema Central Español). Revista de la Sociedad Geológica de España, 3(3–4), 307–322.
  • Perini, G., & Timmerman, M. J. (2008). Permian 40Ar/39Ar ages for post-Variscan minor intrusions in the Iberian range and Spanish central system. Geologica Acta, 6(4), 335–344. https://doi.org/10. 1344/105.000000261
  • Petrus, J. A., & Kamber, B. S. (2011). VisualAge: A novel approach to U-Pb LA–ICP–MS geochronology. Mineralogical Magazine, 75(3), 1633.
  • Putirka, K. (2016). Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. American Mineralogist, 101(4), 841–858. https://doi.org/10.2138/am-2016-5506
  • Rhodes, J. M., Dungan, M. A., Blanchard, D. P., & Long, P. E. (1979). Magma mixing at mid-ocean ridges: Evidence from basalts drilled near 22 N on the Mid-Atlantic Ridge. Tectonophysics, 55(1–2), 35–61.
  • Ridolf, F. (2021). Amp-TB2: An updated model for calcic amphibole thermobarometry. Minerals, 11(3), 324. https://doi.org/10.3390/ min11030324
  • Ridolf, F., Renzulli, A., & Puerini, M. (2010). Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160(1), 45–66. https://doi.org/10.1007/s00410-009-0465-7
  • Rollinson, H., & Pease, V. (2021). Radiogenic Isotopes in Geochronology. In Using Geochemical Data (pp. 178–193). Cambridge University Press. https://doi.org/10.1017/9781108777834
  • Rudnick, R. L., Gao, S., Holland, H. D., & Turekian, K. K. (2003). Composition of the continental crust. In R. L. Rudnick (Ed.), The crust (pp. 1–64). Elsevier.
  • Ruprecht, P., & Wörner, G. (2007). Variable regimes in magma systems documented in plagioclase zoning patterns: El Misti stratovolcano and Andahua monogenetic cones. Journal of Volcanology and Geothermal Research, 165(3–4), 142–162. https://doi.org/10. 1016/j.jvolgeores.2007.06.002
  • Shcherbakov, V. D., Plechov, P. Y., Izbekov, P. E., & Shipman, J. S. (2011). Plagioclase zoning as an indicator of magma processes at Bezymianny Volcano, Kamchatka. Contributions to Mineralogy and Petrology, 162(1), 83–99. https://doi.org/10.1007/ s00410-010-0584-1
  • Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Matthew, S. S., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schone, B., Tubrett, M. N., & Whitehouse, M. J. (2008). Plešovice zircon a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1–2), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
  • Smith, V. C., Blundy, J. D., & Arce, J. L. (2009). A temporal record of magma accumulation and evolution beneath Nevado de Toluca, Mexico, preserved in plagioclase phenocrysts. Journal of Petrology, 50(3), 405–426. https://doi.org/10.1093/petrology/egp005
  • Tejero, R., & Capote, R. (1987). La deformación hercínica en los Macizos Paleozoicos Nororientales de la Cordillera Ibérica. Estudios Geológicos, 43(5–6), 425–434.
  • Tera, F., & Wasserburg, G. J. (1972). U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth and Planetary Science Letters, 14(3), 281–304. https://doi. org/10.1016/0012-821X(72)90128-8
  • Torres, J. A., Lago, M., Pocoví, A., & Carls, P. (1991). Caracteres geológicos del magmatismo calco-alcalino: Stephaniense-Permico en el Anticlinal de Montalbán (provincia de Teruel). Teruel: Revista del Instituto de Estudios Turolenses, 82(1), 7–38.
  • Torsvik, T. H., & Cocks, L. R. M. (2016). Earth history and palaeogeography. Cambridge University Press.
  • Tunheng, A., & Hirata, T. (2004). Development of signal smoothing device for precise elemental analysis using laser ablation-ICPmass spectrometry. Journal of Analytical Atomic Spectrometry, 19(7), 932–934. https://doi.org/10.1039/B402493A
  • Ubide, T., Gale, C., Arranz, E., Lago, M., & Larrea, P. (2014). Clinopyroxene and amphibole crystal populations in a lamprophyre sill from the Catalonian Coastal Ranges (NE Spain): A record of magma history and a window to mineral-melt partitioning. Lithos, 184, 225–242. https://doi.org/10.1016/j.lithos.2013.10.029
  • Verma, S. K., Pandarinath, K., & Verma, S. P. (2012). Statist evaluation of tectonomagmatic discrimination diagrams for granitic rocks and proposal of new discriminant-function-based multi-dimensional diagrams for acid rocks. International Geology Review, 54(3), 325–347. https://doi.org/10.1080/00206814. 2010.543784
  • Verma, S. P., & Verma, S. K. (2013). First 15 probability-based multidimensional tectonic discrimination diagrams for intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic processes. Turkish Journal of Earth Sciences, 22(6), 931–995. https://doi.org/10.3906/ yer-1204-6
  • Viccaro, M., Giacomoni, P. P., Ferlito, C., & Cristofolini, R. (2010). Dynamics of magma supply at Mt Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts. Lithos, 116(1–2), 77–91. https://doi.org/10.1016/j. lithos.2009.12.012
  • Villaseca, C., Barbero, L., & Rogers, G. (1998). Crustal origin of Hercynian peraluminous granitic batholiths of Central Spain: Petrological, geochemical and isotopic (Sr, Nd) constraints. Lithos, 43(2), 55–79.
  • Villaseca, C., Bellido, F., Pérez-Soba, C., & Billström, K. (2009). Multiple crustal sources for post-tectonic I-type granites in the Hercynian Iberian Belt. Mineralogy and Petrology, 96(3–4), 197–211. https://doi.org/10.1007/s00710-009-0057-2
  • Villaseca, C., Downes, H., Pin, C., & Barbero, L. (1999). Nature and composition of the lower continental crust in central Spain and the granulite–granite linkage: Inferences from granulitic xenoliths. Journal of Petrology, 40(10), 1465–1496. https://doi.org/10.1093/ petroj/40.10.1465
  • Villaseca, C., Orejana, D., Higueras, P., Pérez-Soba, C., Serrano, J. G., & Lorenzo, S. (2022). The evolution of the subcontinental mantle beneath the Central Iberian Zone: Geochemical tracking of its mafc magmatism from the Neoproterozoic to the Cenozoic. Earth-Science Reviews, 228, 103997. https://doi.org/10.1016/j. earscirev.2022.103997
  • Virgili, C., Hernando, S., Ramos, A., & Sopeña, A. (1973). La sédimentation Permienne au centre de l’Espagne. Compte rendu sommaire des séances de la Société géologique de France, 15, 109–113.
  • Wilson, M., Neumann, E. R., Davies, G. R., Timmerman, M. J., Heeremans, M., & Larsen, B.T. (2004). Permo-Carboniferous Magmatism and Rifting in Europe: introduction, in: Wilson, M, Neumann E.R., Davies, G.R., Timmerman M.J., Heeremans, M.,Larsen, B.T. (Eds.), Permo-Carboniferous Magmatism and Rifting in Europe. Geological Society of London Special Publications, 223, 1–10. https://doi.org/10.1144/GSL.SP.2004.223.01.01
  • Winchester, J. A., & Floyd, P. A. (1977). Geochemical discrimination of diferent magma series and their diferentiation products using immobile elements. Chemical Geology, 20, 325–343. https://doi. org/10.1016/0009-2541(77)90057-2