Biomecánica de los árbolescrecimiento, anatomía y morfología

  1. Vargas-Silva, Gustavo 1
  1. 1 Angelo State University

    Angelo State University

    San Angelo, Estados Unidos


Madera y bosques

ISSN: 2448-7597 1405-0471

Year of publication: 2019

Volume: 25

Issue: 3

Type: Article

DOI: 10.21829/MYB.2019.2531712 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Madera y bosques

Sustainable development goals


Trees are the largest and heaviest living beings that have ever lived on Earth. In order to achieve this, trees have wood, an exceptional structural material, and they offer several design strategies. This work is a review of the state of the art related to the strategies of growth, anatomy and morphology that use trees, highlighting general concepts related to structural aspects related to plant biomechanics. Moreover, this paper emphasizes the features of natural plant materials, which have a hierarchical organization, and in most cases are fiber-reinforced composite materials, materials with cellular structure, or both, such as wood.

Bibliographic References

  • Archer, R. R. (1987). Growth stresses and strains in trees. Berlin: Springer.
  • Barthélémy, D. & Caraglio, Y. (2007). Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of Botany, 99(3), 375-407. doi: 10.1093/aob/mcl260
  • Conn, A., Pedmale, U. V., Chory, J., Stevens, C. F., & Navlakha, S. (2017). A statistical description of plant shoot architecture. Current Biology, 27(14), 2078-2088. doi: 10.1016/j.cub.2017.06.009
  • Crawley, M. J. (1986). Plant ecology. Oxford: Blackwell Scientific Publications.
  • Davalos-Sotelo, R. (2005). Determination of elastic properties of clear wood by the homogenization method in two dimensions. Wood Science and Technology, 39, 385–417 doi: 10.1007/s00226-005-0288-2
  • Eder, M., Rüggeberg, M., & Burgert, I. (2009). A close-up view of the mechanical design of arborescent plants at different levels of hierarchy - requirements and structural solutions. New Zealand Journal of Forestry Science, 39, 115-124.
  • Ennos, A. R. (2005). Compliance in plants. In C. H. M. Jenkins (Ed.), Compliant structures in nature and engineering (p. 21). Wessex: WIT. Recuperado de
  • Ennos, R. (2016). Trees: A complete guide to their biology and structure. Ithaca: Cornell University Press.
  • Ennos, A. R. (1997). Wind as an ecological factor. Trends in Ecology & Evolution, 12(3), 108-111. doi: 10.1016/S0169-5347(96)10066-5
  • Fagerstedt, K. V. (1996). Wind and trees. edited by M. P. Coutts and J. Grace. Cambridge: Cambridge University Press. 1995. 485 pp. ISBN 0 521 46037 9. Edinburgh Journal of Botany, 53(2), 282-283. doi: 10.1017/S096042860000295X
  • Fratzl, P. (2003). Cellulose and collagen: From fibres to tissues. Current Opinion in Colloid & Interface Science, 8(1), 32-39. doi: 10.1016/S1359-0294(03)00011-6
  • Fratzl, P. (2005). Hierarchical structure and mechanical adaptation of biological materials. In R. L. Reis & S. Weiner (Eds.), Learning from nature how to design new implantable biomaterialsis: From biomineralization fundamentals to biomimetic materials and processing routes: Proceedings of the NATO advanced study institute, held in alvor, algarve, portugal, 13 - 24 October 2003 (pp. 15-34). Dordrecht: Springer Netherlands. doi: 10.1007/1-4020-2648-X_2
  • Fratzl, P. & Weinkamer, R. (2007). Nature’s hierarchical materials. Progress in Materials Science, 52(8), 1263-1334. doi: 10.1016/j.pmatsci.2007.06.001
  • Götmark, F., Götmark, E., & Jensen, A. M. (2016). Why be a shrub? A basic model and hypotheses for the adaptive values of a common growth form. Frontiers in Plant Science, 7, 1095. Recuperado de
  • Galilei, G. (1638). Two new sciences (H. Crew, A. de Salvio Trans.). Leida: Elzevir.
  • Gibson, L. J. (2005). Biomechanics of cellular solids. Journal of Biomechanics, 38(3), 377-399. doi: 10.1016/j.jbiomech.2004.09.027
  • Gibson, L. J. (2012). The hierarchical structure and mechanics of plant materials. Journal of the Royal Society Interface, 9(76), 2749. Recuperado de
  • Gibson, L. J. & Ashby, M. F. (1999). Cellular solids: Structure and properties (paperback (with corrections) ed.). Cambridge: Cambridge University Press.
  • Givnish, T. J. (1988). Adaptation to sun and shade: A whole-plant perspective. Functional Plant Biology, 15(2), 63-92. doi: 10.1071/PP9880063
  • Givnish, T. J. (1995). 1 - Plant stems: Biomechanical adaptation for energy capture and influence on species distributions. En B. L. Gartner (Ed.), Plant stems (pp. 3-49). San Diego: Academic Press. doi: 10.1016/B978-012276460-8/50003-5
  • Goethe, J. W. (1790). La métamorphose des plantes (H. Bideau Trans.) (4a ed.). Paris: Triades. Recuperado de
  • Gordon, J. E. (1978). Structures or why things don't fall down. London: Penguin Books.
  • Gordon, J. E. (2006). The new science of strong materials or why you don't fall through the floor (Expand Princeton Science Library ed.). Princeton: Princeton University Press.
  • Grace, J. (1988). 3. Plant response to wind. Agriculture, Ecosystems & Environment, 22–23, 71-88. doi: 10.1016/0167-8809(88)90008-4
  • Hallé, F. (2001). Branching in plants. En V. Fleury, J. Gouyet, & M. Léonetti (Eds.), Branching in nature: Dynamics and morphogenesis of branching structures, from cell to river networks (pp. 23-40). Berlin: Springer. doi: 10.1007/978-3-662-06162-6_2
  • Hallé, F. & Oldeman, R. A. A. (1970). Essai sur l’architecture et la dynamique de croissance des arbres tropicaux. Paris: Masson.
  • Hallé, F., Oldeman, R. A. A., & Tomlinson, P. B. (1978). Tropical trees and forests: An architectural analysis. Berlin: Springer.
  • Hellström, L., Carlsson, L., Falster, D. S., Westoby, M., & Brännström, Å. (2018). Branch thinning and the large-scale, self-similar structure of trees. The American Naturalist, 192(1), E37-E47. doi: 10.1086/697429
  • Holmberg, S., Persson, K., & Petersson, H. (1999) Nonlinear mechanical behaviour and analysis of wood and fibre materials. Computers and Structures, 72, 459–480. doi:10.1016/S0045-7949(98)00331-9
  • Horn, H. S. (1971). The adaptive geometry of trees. Princeton: Princeton University Press.
  • Huiskes, R. (2000). If bone is the answer, then what is the question? Journal of Anatomy, 197, 145-156. doi: 10.1046/j.1469-7580.2000.19720145.x
  • Jeronimidis, G. (2008). (2008). Bioinspiration for engineering and architecture: Materials—Structures—Function. Paper presented at the Silicon + Skin: Biological Processes and Computation, Minneapolis, Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) 26. Recuperado de
  • King, D. A. (1986). Tree form, height growth, and susceptibility to wind damage in acer saccharum. Ecology, 67(4), 980-990. doi: 10.2307/1939821
  • King, D. A. (1990). The adaptive significance of tree height. The American Naturalist, 135(6), 809-828. doi: 10.1086/285075
  • Lakes, R. (1993). Materials with structural hierarchy. Nature, 361(6412), 511-515. doi: 10.1038/361511a0
  • Mattheck, C. (1991). Trees: The mechanical design. Berlin: Springer-Verlag.
  • Mattheck, C., Bethge, K., & Schäfer, J. (1993). Safety factors in trees. Journal of Theoretical Biology, 165(2), 185-189. doi: 10.1006/jtbi.1993.1184
  • Mattheck, C. & Kübler, H. (1997). Wood: The internal optimization of trees. Berlin: Springer.
  • Mattheck, C. (1995). 3 - Biomechanical optimum in woody stems. En B. L. Gartner (Ed.), Plant stems (pp. 75-90). San Diego: Academic Press. doi: 10.1016/B978-012276460-8/50005-9
  • Mayer, G. & Sarikaya, M. (2002). Rigid biological composite materials: Structural examples for biomimetic design. Experimental Mechanics, 42(4), 395-403. doi: 10.1007/BF02412144
  • McMahon, T. (1975). The mechanical design of trees. Scientific American, 233(1), 92. doi: 10.1038/scientificamerican0775-92
  • McMahon, T. (1973). Size and shape in biology. Science, 179(4079), 1201. Recuperado de
  • McMahon, T. A. & Kronauer, R. E. (1976). Tree structures: Deducing the principle of mechanical design. Journal of Theoretical Biology, 59(2), 443-466. doi: 10.1016/0022-5193(76)90182-X
  • Niklas, K. J. (1992). Plant biomechanics: An engineering approach to plant form and function. Chicago: University of Chicago Press.
  • Niklas, K. J. (1994). Interspecific allometries of critical buckling height and actual plant height. American Journal of Botany, 81(10), 1275-1279. doi: 10.2307/2445403
  • Pearcy, R. W., Muraoka, H., & Valladares, F. (2005). Crown architecture in sun and shade environments: Assessing function and trade-offs with a three-dimensional simulation model. New Phytologist, 166(3), 791-800. doi: 10.1111/j.1469-8137.2005.01328.x
  • Peyhardi, J., Caraglio, Y., Costes, E., Lauri, P., Trottier, C., & Guédon, Y. (2017). Integrative models for joint analysis of shoot growth and branching patterns. New Phytologist, 216(4), 1291-1304. doi: 10.1111/nph.14742
  • Plomion, C., Leprovost, G., & Stokes, A. (2001). Wood formation in trees. Plant Physiology, 127(4), 1513. Recuperado de
  • Raghavendra, A. S. (1991). Physiology of trees. New York: Wiley.
  • Speck, T., Spatz, H. —. C., & Vogellehner, D. (1990). Contributions to the biomechanics of plants. I. stabilities of plant stems with strengthening elements of different cross-sections against weight and wind forces. Botanica Acta, 103(1), 111-122. doi: 10.1111/j.1438-8677.1990.tb00136.x
  • Speck, T. & Burgert, I. (2011). Plant stems: Functional design and mechanics. Annual Review of Materials Research, 41(1), 169-193. doi: 10.1146/annurev-matsci-062910-100425
  • Sun, C. C. (2005). True density of microcrystalline cellulose. Journal of Pharmaceutical Sciences, 94(10), 2132-2134. doi: 10.1002/jps.20459
  • Terborgh, J. (1992). Maintenance of diversity in tropical forests. Biotropica, 24(2), 283-292. doi: 10.2307/2388523
  • Thibaut, B., Gril, J., & Fournier, M. (2001). Mechanics of wood and trees: Some new highlights for an old story. Comptes Rendus De l' Académie Des Sciences Series, 329(9), 701-716. doi: 10.1016/S1620-7742(01)01380-0
  • Thomas, P. A. (2014). Trees: Their natural history (2nd ed.). Cambridge: Cambridge University Press. doi: 10.1017/CBO9781139026567
  • Valladares, F. & Niinemets, Ü. (2007). The architecture of plant crowns. Functional plant ecology, second edition CRC Press. doi: 10.1201/9781420007626.ch4
  • VanderHart, D. L. & Atalla, R.H. (1984). Studies of microstructure in native celluloses using solid‐state 13C NMR. Macromolecules 17, 1465-1472.
  • Vargas, G., Trifol, J., Algar, I., Arbelaiz, A., Mondragon, G., Fernandes, S. C. M., . . . , & Eceiza, A. (2015). Nanostructured composite materials reinforced with nature-based nanocellulose. En S. Syngellakis (Ed.), Natural filler and fibre composites: Development and characterisation (pp. 75). Wessex: WIT. Recuperado de
  • Vargas-Silva, G. (2017). Estrategias mecánicas de las plantas arborescentes: enseñanzas estructurales de los árboles. Ingeniare. Revista Chilena de Ingeniería, 25(3), 510-523.
  • Vincent, J. F. (1999). From cellulose to cell. Journal of Experimental Biology, 202(23), 3263. Recuperado de
  • Vogel, S. (1989). Drag and reconfiguration of broad leaves in high winds. Journal of Experimental Botany, 40(8), 941-948. doi: 10.1093/jxb/40.8.941
  • Vogel, S. (2003). Comparative biomechanics: Life's physical world. Princeton: Princeton University Press.
  • Vogel, S. (2009). Leaves in the lowest and highest winds: Temperature, force and shape. New Phytologist, 183(1), 13-26. doi: 10.1111/j.1469-8137.2009.02854.x
  • Wilson, B. F. & Archer, R. R. (1979). Tree design: Some biological solutions to mechanical problems. Bioscience, 29(5), 293-298. doi: 10.2307/1307825