The effects of astronomically forced climate change on hemipelagic carbonate sedimentation in a tectonically active settingthe Albian Mioño Formation in Castro Urdiales, Cantabria, N Spain

  1. Aitor Payros 1
  2. Naroa Martínez Braceras 1
  3. Luis M. Agirrezabala 1
  4. Jaume Dinarès Turell
  5. Idoia Rosales
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

Revista:
Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Año de publicación: 2022

Volumen: 48

Número: 4

Páginas: 405-423

Tipo: Artículo

DOI: 10.1007/S41513-022-00198-Z DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of iberian geology: an international publication of earth sciences

Resumen

El conocimiento sobre la expresión estratigráfica de los ciclos de cambio climático producidos astronómicamente en la banda de frecuencia de Milankovitch ha aumentado considerablemente en las últimas décadas. Sin embargo, hay algunos aspectos de los que aún no se tiene mucha información, como la naturaleza de los procesos ambientales climáticamente regulados que, en última instancia, determinan la sedimentación cíclica. Del mismo modo, no se dispone de mucha información sobre la expresión de los ciclos de Milankovitch en sucesiones acumuladas en cuencas tectónicamente activas. Con el fin de paliar estas deficiencias, en este trabajo se estudian los depósitos hemipelágicos albienses de la Formación Mioño de Castro Urdiales (Cuenca Vasco-Cantábrica), los cuales se acumularon durante una fase de rifting con fuerte actividad tectónica. El análisis sedimentológico, petrográfico y cicloestratigráfico demuestra que, a pesar de la existencia de inestabilidades tectónicas y alguna alteración diagenética, la alternancia carbonatada hemipelágica de hace 110.68–110.47 Ma estuvo regulada astronómicamente. Las fluctuaciones de estacionalidad inducidas por los ciclos de precesión causaron variaciones periódicas (20 ka) en las tasas de producción carbonatada (abundancia de plancton pelágico calcáreo y micrita exportada desde áreas someras adyacentes) y/o dilución silícea (aporte de sedimento siliciclástico terrestre y producción de partículas silíceas por esponjas). Estas variaciones determinaron la formación de calizas margosas cuando la estacionalidad anual era baja (i.e., verano boreal en el afelio, invierno en el perihelio) y la acumulación de margas cuando aumentaba la estacionalidad (i.e., verano boreal en el perihelio, invierno en el afelio). La incidencia de estos procesos aumentaba y disminuía en consonancia con la modulación de la estacionalidad producida por los ciclos de excentricidad corta de 100 ka. En conclusión, este estudio demuestra que los ciclos de Milankovitch pueden quedar fielmente registrados en sucesiones hemipelágicas acumuladas en contextos tectónicamente activos si los flujos gravitacionales de sedimento u otras perturbaciones no afectan a la sedimentación autóctona.

Información de financiación

Referencias bibliográficas

  • Agirrezabala, L. M. (2015). Syndepositional forced folding and related fluid plumbing above a magmatic laccolith: Insights from outcrop (Lower Cretaceous, Basque-Cantabrian Basin, western Pyrenees). Geological Society of America Bulletin, 127, 982–1000.
  • Agirrezabala, L. M., & García-Mondéjar, J. (1992). Tectonic origin of carbonate depsoitional sequences in a strike-slip setting (Aptian, northern Iberia). Sedimentary Geology, 81, 163–172.
  • Astibia, H., Elorza, J., Pisera, A., Alvarez-Perez, G., Payros, A., & Ortiz, S. (2014). Sponges and corals from the middle Eocene (Bartonian) marly formations of the Pamplona Basin (Navarre, western Pyrenees): Taphonomy, taxonomy and paleoenvironments. Facies, 60, 91–110.
  • Batenburg, S. J., Gale, A. S., Sprovieri, M., Hilgen, F. J., Thibault, N., Boussaha, M., & Orue-Etxebarria, X. (2014). An astronomical time scale for the Maastrichtian based on the Zumaia and Sopelana sections (Basque country, northern Spain). Journal of the Geological Society, 171, 165–180.
  • Batenburg, S. J., Sprovieri, M., Gale, A. S., Hilgen, F. J., Hüsing, S., Laskar, J., Liebrand, D., Lirer, F., Orue-Etxebarria, X., Pelosi, N., & Smit, J. (2012). Cyclostratigraphy and astronomical tuning of the Late Maastrichtian at Zumaia (Basque country, Northern Spain). Earth and Planetary Science Letters, 359, 264–278.
  • Beaufort, L., Bolton, C. T., Sarr, A. C., Suchéras-Marx, B., Rosenthal, Y., Donnadieu, Y., Barbarin, N., Bova, S., Cornault, P., Gally, Y., Gray, E., Mazur, J. C., & Tetard, M. (2022). Cyclic evolution of phytoplankton forced by changes in tropical seasonality. Nature, 601, 79–84.
  • Bellanca, A., Claps, M., Erba, E., Masetti, D., Neri, R., Premoli Silva, I., & Venezia, F. (1996). Orbitally induced limestone/marlstone rhythms in the Albian-Cenomanian Cismon section (Venetian region, northern Italy): Sedimentology, calcareous and siliceous plankton distribution, elemental and isotope geochemistry. Palaeogeography Palaeoclimatology Palaeoecology, 126, 227–260.
  • Bodego, A., & Agirrezabala, L. M. (2013). Syn-depositional thin- and thick-skinned externsional tectonics in the mid-Cretaceous Lasarte sub-basin, western Pyrenees. Basin Research, 25, 594–612.
  • Boulila, S., De Rafelis, M., Hinnov, L. A., Gardin, S., Galbrun, B., & Collin, P. (2010). Orbitally forced climate and sea-level changes in the Paleoceanic Tethyan domain (marl-limestone alternations, Lower Kimmeridgian, SE France). Palaeogeography Palaeoclimatology Palaeoecology, 292, 57–70.
  • Cantalejo, B., & Pickering, K. T. (2015). Orbital forcing as principal driver for fine-grained deep-marine siliciclastic sedimentation, Middle Eocene Ainsa Basin, Spanish Pyrenees. Palaeogeography Palaeoclimatology Palaeoecology, 421, 24–47.
  • Cecil, C. B., & Dulong, F. T. (2003). Precipitation models for sediment supply in warm climates. In C. B. Cecil & N. T. Edgar (Eds.), Climate controls on stratigraphy. SEPM Special Publications (Vol. 77, pp. 21–27). Society for Sedimentary Geology.
  • De Benedictis, D., Bosence, D., Waltham, D. (2007). Tectonic control on peritidal carbonate parasequence formation: an investigation using forward tectono-stratigraphic modelling. Sedimentology, 54, 587–605.
  • De Boer, P. L. (1991). Pelagic black shale-carbonate rhythms: Orbital forcing and oceanographic response. In G. Einsele, W. Ricken, & A. Seilacher (Eds.), Cycles and events in stratigraphy (pp. 63–78). Springer.
  • De Boer, P. L., & Smith, D. G. (1994). Orbital forcing and cyclic sequences. In P. L. De Boer & D. G. Smith (Eds.), Orbital forcing and cyclic sequences. IAS Special Publication (Vol. 19, pp. 1–14). International Association of Sedimentologists.
  • Dinarès-Turell, J., Baceta, J. I., Pujalte, V., Orue-Etxebarria, X., Bernaola, G., & Lorito, S. (2003). Untangling the Palaeocene climatic rhythm: An astronomically calibrated early Palaeocene magnetostratigraphy and biostratigraphy at Zumaia (Basque basin, northern Spain). Earth and Planetary Science Letters, 216, 483–500.
  • Dinarès-Turell, J., Martínez-Braceras, N., & Payros, A. (2018). Highresolution integrated cyclostratigraphy from the Oyambre section (Cantabria, N Iberian peninsula): Constraints for orbital tuning and correlation of middle Eocene Atlantic deep-sea records. Geochemistry Geophysics Geosystems, 19, 787–806.
  • Dinarès-Turell, J., Westerhold, T., Pujalte, V., Röhl, U., & Kroon, D. (2014). Astronomical calibration of the Danian stage (Early Paleocene) revisited: Settling chronologies of sedimentary records across the Atlantic and Pacific Oceans. Earth and Planetary Science Letters, 405, 119–131.
  • Einsele, G., & Ricken, W. (1991). Limestone-marl alternation: An overview. In G. Einsele, W. Ricken, & A. Seilacher (Eds.), Cycles and events in stratigraphy (pp. 23–47). Springer.
  • Einsele, G., Ricken, W., & Seilacher, A. (1991). Cycles and events in stratigraphy. Springerg.
  • Elderbak, K., & Leckie, R. M. (2016). Paleocirculation and foraminiferal assemblages of the Cenomanian-Turonian Bridge Creel Limestone bedding copulets: Productivity vs. dilution during OAE2. Cretaceous Research, 60, 52–77.
  • Fenner, J. (2001). Palaeoceanographic and climatic changes during the Albian, summary of the results from the Kirchrode boreholes. Palaeogeography Palaeoclimatology Palaeoecology, 174, 287–304.
  • Ferguson, I. J., Da Silva, A. C., Chow, N., & George, A. D. (2021). Interplay of eutatic, tectonic and autogenic controls on a Late Devonian carbonate platform, northern Canning Basin, Australia. Basin Research, 33, 312–341.
  • Fernandez-Mendiola, P. A., & Garcia-Mondejar, J. (1995). Carbonate platform growth influenced by contemporaneous basaltic intrusion (Albian of Larrano, Spain). Sedimentology, 50, 961–978.
  • Gale, A. S., Mutterlose, J., & Batemburg, S. (2020). The Cretaceous Period. In F. M. Gradstein, J. G. Ogg, M. D. Schmitz, & G. M. Ogg (Eds.), Geologic Times Scale 2020 (pp. 1023–1086). Elsevier.
  • Gambacorta, G., Malinverno, A., & Erba, E. (2019). Orbital forcing of carbonate versus siliceous productivity in the late Albian-late Cenomanian (Umbria-Marche Basin, central Italy). Newsletters on Stratigraphy, 52, 197–220.
  • García-Mondéjar, J. (1990). The Aptian-Albian carbonate episode of the Basque-Cantabrian basin, northern Spain: general characteristics, controls and evolution. In M. E. Tucker, J. L. Wilson, P. D. Crevello, J. R. Sarg, & J. F. Read (Eds.), Carbonate platforms, facies and sequences. IAS Special Publication (Vol. 9, pp. 257–290). International Association of Sedimentologists.
  • García-Mondéjar, J., Agirrezabala, L. M., Aranburu, A., FernandezMendiola, P. A., Gomez-Perez, I., Lopez-Horgue, M., & Rosales, I. (1996). Aptian-Albian tectonic pattern of the Basque-Cantabrian Basin (northern Spain). Geological Journal, 31, 13–45.
  • Hallam, A. (1986). Origin of minor limestone-shale cycles – climatically induced or diagenetic. Geology, 14, 609–612.
  • Hay, W. W., DeConto, R., Wold, C. N., Wilson, K. M., Voigt, S., Schulz, M., Wold-Rossby, A., Dullo, W. C., Ronov, A. B., Balukhovsky, A. N., & Soeding, E. (1999). Alternative global Cretaceous paleogeography. In E. Barrera & C. Johnson (Eds.), The evolution of Cretaceous ocean/climate systems. GSA Special Paper (Vol. 332, pp. 1–47). Geological Society of America.
  • Hinnov, L. A. (2013). Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences. Geological Society of America Bulletin, 125, 1703–1734.
  • Hopkins, J., Henson, S. A., Painter, S. C., Tyrrell, T., & Poulton, A. J. (2015). Phenological characteristics of global coccolithophore blooms. Global Biogeochemical Cycles, 29, 239–253.
  • Intxauspe-Zubiaurre, B., Martínez-Braceras, N., Payros, A., Ortiz, S., Dinarès-Turell, J., & Flores, J. A. (2018). The last Eocene hyperthermal (Chron C19r event, ~41.5 Ma): Chronological and paleoenvironmental insights from a continental margin (Cape Oyambre, N Spain). Palaeogeography Palaeoclimatology Palaeoecology, 505, 198–216.
  • Jimenez-Berrocoso, A., Elorza, J., & MacLeod, K. G. (2013). Proximate environmental forcing in fine-scale geochemical records of calcareous couplets (Upper Cretaceous and Palaeocene of the Basque-Cantabrian Basin, eastern North Atlantic). Sedimentary Geology, 284, 76–90.
  • Jones, M. M., Sagerman, B. B., Oakes, R. L., Parker, A. L., Leckie, R. M., Bralower, T. J., Sepulveda, J., & Fortiz, V. (2019). Astronomical pacing of relative sea level during Oceanic Anoxic Event 2: Preliminary studies of the expanded SH#1 core, Utah, USA. Geological Society of America Bulletin, 131, 1702–1722.
  • Kodama, K. P., Anastasio, D. J., Newton, M. L., Pares, J. M., & Hinnov, L. A. (2010). High-resolution rock magnetic cyclostratigraphy in an Eocene flysch, Spanish Pyrenees. Geochemistry Geophysics Geosystems, 11, Q0AA07.
  • Kodama, K. P., & Hinnov, L. A. (2015). Rock magnetic cyclostratigraphy. Wiley.
  • Laskar, J. (2020). Astrochronology. In F. M. Gradstein, J. G. Ogg, M. D. Schmitz, & G. M. Ogg (Eds.), Geologic times scale 2020 (pp. 139–158). Elsevier.
  • Laskar, J., Fienga, A., Gastineau, M., & Manche, H. (2011). La2010: A new orbital solution for the long-term motion of the Earth. Astronomomy & Astrophysics, 532, A89.
  • Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., & Levrard, B. (2004). A long-term numerical solution for the insolation quantities of the Earth. Astronomomy & Astrophysics, 428, 261–285.
  • Laurin, J., Meyers, S. R., Galeotti, S., & Lanci, L. (2016). Frequency modulation reveals the phasing of orbital eccentricity during Cretaceous Oceanic Anoxic Event II and the Eocene hyperthermals. Earth and Planetary Science Letters, 442, 143–156.
  • Laurin, J., & Sageman, B. B. (2007). Cenomanian-Turonian coastal record in SW Utah, U.S.A.: Orbital-scale transgressive-regressive events during Oceanic Anoxic Event II. Journal of Sedimentary Research, 77, 731–756.
  • Li, M. S., Hinnov, L., & Kump, L. (2019). Acycle: Time-series analysis software for paleoclimate research and education. Computers & Geosciences, 127, 12–22.
  • Lopez-Horgue, M. A., Iriarte, E., Schröeder, S., Fernandez-Mendiola, P. A., Caline, B., Corneyllie, H., Frémont, J., Sudrie, M., & Zerti, S. (2010). Structurally controlled hydrothermal dolomites in Albian carbonates of the Ason valley, Basque-Cantabrian Basin, northern Spain. Marine and Petroleum Geology, 27, 1069–1092.
  • Maldonado, M., Carmona, M. C., Velasquez, Z., Puig, A., Cruzado, A., Lopez, A., & Young, C. M. (2005). Siliceous sponges as a silicon sink: An overlooked aspect of benthopelagic coupling in the marine silicon cycle. Limnology and Oceanography, 50, 799–809.
  • Mann, M. E., & Lees, J. M. (1996). Robust estimation of background noise and signal detection in climatic time series. Climatic Change, 33, 409–445.
  • Marshall, J. D. (1992). Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geological Magazine, 129, 143–160.
  • Martinez, M. (2018). Chapter four—Mechanisms of preservation of the eccentricity and longer-term Milankovitch cycles in detrital supply and carbonate production in hemipelagic marl-limestone alternations. In M. Monenari (Ed.), Cyclostratigraphy and astrochronology (pp. 189–218). Elsevier.
  • Martínez-Braceras, N., Franceschetti, G., Payros, A., Monechi, S., & Dinarès-Turell, J. (2022). High-resolution cyclochronology of the lowermost Ypresian Arnakatxa section (Basque-Cantabrian Basin, western Pyrenees). Newsletters on Stratigraphy. https:// doi. org/ 10. 1127/ nos/ 2022/ 0706
  • Martínez-Braceras, N., Payros, A., Miniati, F., Arostegi, J., & Franceschetti, G. (2017). Contrasting environmental effects of astronomically driven climate change on three Eocene hemipelagic successions from the Basque-Cantabrian Basin. Sedimentology, 64, 960–986.
  • Meyers, S. R. (2012). Seeing red in cyclic stratigraphy: Spectral noise estimation for astrochronology. Paleoceanography, 27, PA3228.
  • Meyers, S. R., Sageman, B. B., & Hinnov, L. A. (2001). Integrated quantitative stratigraphy of the Cenomanian-Turonian Bridge Creek Limestone Member using evolutive harmonic analysis and stratigraphic modeling. Journal of Sedimentary Research, 71, 628–644.
  • Miró, J., Manatschal, G., Cadenas, P., & Muñoz, J. A. (2021). Reactivation of a hyperextended rift system: The BasqueCantabrian Pyrenees case. Basin Research, 33, 3077–3101.
  • Mount, J., & Ward, P. (1986). Origin of limestone/marl alternations in the Upper Maastrichtian of Zumaya, Spain. Journal of Sedimentary Petrology, 56, 228–236.
  • Owen, H. G. (1988). The ammonite zonal sequence and ammonite taxonomy in the Douvilleiceras mammillatum superzone (lower Albian) in Europe. Bulletin of the British Museum (natural History) Geology Series, 44, 177–231.
  • Payros, A., & Martinez-Braceras, N. (2014). Orbital forcing in turbidite accumulation during the Eocene greenhouse interval. Sedimentology, 61, 1411–1432.
  • Poletti, L., Silva, I. P., Masetti, D., Pipan, M., & Claps, M. (2004). Orbitally driven fertility cycles in the Palaeocene pelagic sequences of the Southern Alps (Northern Italy). Sedimentary Geology, 164, 35–54.
  • Preto, N., Spötl, C., Mietto, P., Gianolla, P., Riva, A., & Manfrin, S. (2005). Aragonite dissolution, sedimentation rates and carbon isotopes in deep-water hemipelagites (Livinallongo Formation, Middle Triassic, northern Italy). Sedimentary Geology, 181, 173–194.
  • Reuning, L., Reijmer, J. J. G., Betzler, C., Swart, P., & Bauch, T. (2005). The use of paleoceanographic proxies in carbonate periplatform settings: Opportunities and pitfalls. Sedimentary Geology, 175, 131–152.
  • Reuning, L., Reijmer, J. J. G., & Mattioli, E. (2006). Aragonite cycles: Diagenesis caught in the act. Sedimentology, 53, 849–866.
  • Ricken, W. (1991). Variations of sedimentation rates in rhythmically bedded sediments: Distinction between depositional types. In G. Einsele, W. Ricken, & A. Seilacher (Eds.), Cycles and events in stratigraphy (pp. 167–187). Springer.
  • Rosales, I. (1995). La plataforma carbonatada de Castro Urdiales (Aptiense/Albiense, Cantabria). PhD thesis, University of the Basque Country.
  • Rosales, I. (1999). Controls on carbonate-platform evolution on active fault blocks: The Lower Cretaceous Castro Urdiales platform (Aptian-Albian, northern Spain). Journal of Sedimentary Research, 69, 447–465.
  • Rosales, I., Fernandez-Mendiola, P. A., & Garcia-Mondejar, J. (1994). Carbonate depositional sequence development on active fault blocks: The Albian in the Castro Urdiales area, northern Spain. Sedimentology, 41, 861–882.
  • Rosales, I., Mehl, D., Fernandez-Mendiola, P. A., & Garcia-Mondejar, J. (1995). An unusual poriferan community in the Albian of Islares (north Spain): Palaeoenvironmental and tectonic implications. Palaeogeography Palaeoclimatology Palaeoecology, 119, 47–61.
  • Schmitz, B., Pujalte, V., & Nuñez-Betelu, K. (2001). Climate and sealevel perturbations during the initial Eocene thermal maximum: Evidence from siliciclastic units in the Basque Basin (Ermua, Zumaia and Trabakua pass), northern Spain. Palaeogeography Palaeoclimatology Palaeoecology, 165, 299–320.
  • Schwarzacher, W. (1993). Cyclostratigraphy and the Milankovitch theory. Elsevier.
  • Tavani, S., & Muñoz, J. A. (2012). Mesozoic rifting in the BasqueCantabrian Basin (Spain): Inherited faults, transversal structures and stress perturbation. Terra Nova, 24, 70–76.
  • Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70, 1055–1096.
  • Weedon, G. P. (2003). Time-series analysis and cyclostratigraphy: Examining stratigraphic records of environmental cycles. Cambridge University Press.
  • Westphal, H., Bohm, F., & Bornholdt, S. (2004). Orbital frequencies in the carbonate sedimentary record: Distorted by diagenesis? Facies, 50, 3–11.
  • Westphal, H., Hilgen, F., & Munnecke, A. (2010). An assessment of the suitability of individual rhythmic carbonate successions for astrochronological application. Earth Science Reviews, 90, 19–30.
  • Zeebe, E., & Lourens, L. J. (2019). Solar system chaos and the Paleocene-Eocene boundary age constrained by geology and astronomy. Science, 365, 926–929.