Testing Modified Confusion Entropy as Split Criterion for Decision Trees
- J. David Nuñez-Gonzalez 11
- Sá, Alexander Gonzalo de 1
- Manuel Graña 11
-
1
Universidad del País Vasco/Euskal Herriko Unibertsitatea
info
Universidad del País Vasco/Euskal Herriko Unibertsitatea
Lejona, España
- Hilde Pérez García (coord.)
- Lidia Sánchez González (coord.)
- Manuel Castejón Limas (coord.)
- Héctor Quintián Pardo (coord.)
- Emilio Corchado Rodríguez (coord.)
Argitaletxea: Springer Suiza
ISBN: 978-3-030-29859-3, 978-3-030-29858-6
Argitalpen urtea: 2019
Orrialdeak: 3-13
Biltzarra: Hybrid Artificial Intelligent Systems (14. 2019. León)
Mota: Biltzar ekarpena
Laburpena
Confusion Entropy (CEN) has been proposed as a performance measure for classification showing a better discrimination against other metrics. Many works use CEN for other purposes. Recently, an improvement in the definition of CEN has been proposed, a modified CEN (MCEN). The aim of this work is to review a previous work based on a classification tree that uses CEN as a pruning criterion, replacing this criterion with the newly defined MCEN metric.