Engineering Iron Oxide Nanoparticles For Angiogenic Therapies

  1. Carenza, Elisa
Dirigida por:
  1. Anna Rosell Novel Director/a
  2. Anna Roig Serra Director/a

Universidad de defensa: Universitat Autònoma de Barcelona

Fecha de defensa: 11 de julio de 2014

Tribunal:
  1. Uwe Himmelreich Presidente/a
  2. Daniel Maspoch Comamala Secretario/a
  3. Gorka Orive Arroyo Vocal

Tipo: Tesis

Teseo: 367510 DIALNET lock_openTDX editor

Resumen

El trabajo de investigación se ha desarrollado conjuntamente en el Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC) y en el Instituto de Investigación del Hospital Universitario Vall d¿Hebron (VHIR) en Barcelona. El trabajo se enmarca dentro del contexto tanto de nanomateriales como de nanomedicina. El objetivo principal de la tesis doctoral es desarrollar materiales para terapias no invasivas encaminadas a potenciar la regeneración de vasos sanguinos después de un evento isquémico. Para ello se han utilizado nanopartículas magnéticas de oxido de hierro como instrumentos de visualización (¿imaging¿ por resonancia magnética) y de acumulación de proteínas/células en tejidos específicos bajo la influencia de un campo magnético externo. Se han desarrollado dos estrategias: la primera introduciendo las nanopartículas magnéticas en células endoteliales progenitora y la segunda en nanocápsulas poliméricas junto a un factor de crecimiento vascular. La tesis está estructurada en seis capítulos: CAPÍTULO 1 Las nanopartículas superparamagnéticas de óxido de hierro (SPIONs) son conocidas en diagnosis clínico por utilizarse como agentes de contraste que permiten la visualización de los tejidos a través de resonancia magnética (MRI). El capítulo contiene una breve introducción a la nanotecnología y una presentación de las características magnéticas de los materiales. Además contiene una revisión de los métodos de síntesis de las nanopartículas superparamagnéticas de oxido de hierro. CAPÍTULO 2 Describe la síntesis de nanopartículas superparamagnéticas de oxido de hierro mediante dos técnicas: descomposición térmica y microonda. Ambos métodos nos permiten de obtener partículas monodispersas con tamaño inferior a 20 nm y con excelentes propiedades magnéticas. Se ha logrado estabilizar las partículas en agua y en distintos medios celulares mediante estabilizantes iónicos (hidróxido de tetrametilamonio y sodio citrato). CAPÍTULO 3 La isquemia cerebral se define como la obstrucción de arterias intracraneales, debida a trombos o émbolos, que producen una lesión en los tejidos no perfundidos por la sangre. La regeneración y reparación del tejido cerebral basadas en la mejora de la angiogénesis endógena podría convertirse en realidad en un futuro próximo, al haberse identificado células progenitoras endoteliales (EPCs) en individuos adultos. Las EPCs son células que pueden inducir neo-vascularización y/o remodelación de vasos mediante liberación de factores angiogénicos. Nuestro objetivo es potenciar la acción terapéutica de las EPCs guiándolas a áreas específicas del cerebro con un campo magnético externo para potenciar la regeneración cerebral después de un ictus. En este capítulo se describen los experimentos in vitro de marcaje celular, toxicidad y funcionalidad de células. Además se describe un experimento in vivo con modelos animales demostrando la acumulación de EPCs magnetizadas en la zona del cerebro en la que se aplicó un campo magnético externo. CAPÍTULO 4 Otra estrategia que se ha investigado consiste en encapsular factores de crecimientos junto con las nanopartículas magnéticas (SPIONs) en nanocápsulas biodegradables de polímero de ácido poli(D,L-láctico-co-glicólico) (PLGA), para que éstas puedan guiarse a la lesión cerebral mediante la aplicación de un campo magnético externo. Durante los meses de estancia en el grupo de la Ecole de Pharmacie Genève-Lausanne (EPGL) se empezó la síntesis de nanocápsulas poliméricas con SPIONs y proteínas modelos. Este capítulo describe la síntesis y las caracterizaciones de las nanocápsulas obtenidas. CAPÍTULO 5 Conclusiones: se detallan los resultados más importantes obtenidos en esta tesis. En la primera parte se evidencian los siguientes resultados: 1. Se han sintetizado nanopartículas de óxido de hierro biocompatibiles y con las características adecuadas para la terapia celular; 2. Se ha realizado un marcaje no tóxico de células endoteliales progenitoras con SPIONs. Además se han reportado diferentes eficiencias de marcaje celular dependiendo del tipo de EPCs (early- y outgrowth). También se ha evidenciado que la eficiencia del marcaje celular puede variar utilizando diferentes condiciones de tiempo de incubación, de concentración de SPIONs y de agregación de partículas en los medios cultivos. Aún así, no se ha reportado ningún cambio significativo en la capacidad de tubulogénesis (formación de conexiones inter-celulares) ni de migración en población outgrowth de células endoteliales progenitoras marcadas con SPIONs; 3. Se ha detectado un aumento en la liberación de factores de crecimiento angiogénicos en células outgrowth marcadas con SPIONs respecto a células outgrowth no marcadas; 4. En un estudio preliminar in vivo en ratones, se ha demostrado con éxito la migración y acumulación de células endoteliales progenitoras (poblaciones early), marcadas con SPIONs, en la zona del celebro próxima a la aplicación del campo magnético externo. En la segunda parte del trabajo de tesis se ha conseguido: 1. La síntesis de nanocápsulas de polímero biodegradable de ácido poli(D,L- láctico-co-glicólico), mediante un proceso de doble emulsión, con tamaños de partícula de 200 nm adecuadas para la administración sistémica; 2. Co-encapsulación de SPIONs y factor de crecimiento vascular endotelial (proteína comercial, recombinant human VEGF165) con buena eficiencia. 3. La proliferación de células endoteliales potenciada por la actividad biológica de VEGF165 encapsulado. CAPÍTULO 6 Contiene el curriculum del autor y los trabajos publicados durante el periodo de doctorado.