The Structure of the lexicon in the task of the automatic acquisition of lexical information

  1. Romeo, Lauren Michele
Zuzendaria:
  1. Núria Bel Rafecas Zuzendaria

Defentsa unibertsitatea: Universitat Pompeu Fabra

Fecha de defensa: 2015(e)ko urria-(a)k 16

Epaimahaia:
  1. Germán Rigau Claramunt Presidentea
  2. Gemma Boleda Torrent Idazkaria
  3. Elisabetta Jezek Kidea

Mota: Tesia

Teseo: 393753 DIALNET lock_openTDX editor

Laburpena

La información de clase semántica de los nombres es fundamental para una amplia variedad de tareas del procesamiento del lenguaje natural (PLN), como la traducción automática, la discriminación de referentes en tareas como la detección y el seguimiento de eventos, la búsqueda de respuestas, el reconocimiento y la clasificación de nombres de entidades, la construcción y ampliación automática de ontologías, la inferencia textual, etc. Una aproximación para resolver la construcción y el mantenimiento de los léxicos de gran cobertura que alimentan los sistemas de PNL, una tarea muy costosa y lenta, es la adquisición automática de información léxica, que consiste en la inducción de una clase semántica relacionada con una palabra en concreto a partir de datos de su distribución obtenidos de un corpus. Precisamente, por esta razón, se espera que la investigación actual sobre los métodos para la producción automática de léxicos de alta calidad, con gran cantidad de información y con anotación de clase como el trabajo que aquí presentamos, tenga un gran impacto en el rendimiento de la mayoría de las aplicaciones de PNL. En esta tesis, tratamos la adquisición automática de información léxica como un problema de clasificación. Con este propósito, adoptamos métodos de aprendizaje automático para generar un modelo que represente los datos de distribución vectorial que, basados en ejemplos conocidos, permitan hacer predicciones de otras palabras desconocidas. Las principales preguntas de investigación que planteamos en esta tesis son: (i) si los datos de corpus proporcionan suficiente información para construir representaciones de palabras de forma eficiente y que resulten en decisiones de clasificación precisas y sólidas, y (ii) si la adquisición automática puede gestionar, también, los nombres polisémicos. Para hacer frente a estos problemas, realizamos una serie de validaciones empíricas sobre nombres en inglés. Nuestros resultados confirman que la información obtenida a partir de la distribución de los datos de corpus es suficiente para adquirir automáticamente clases semánticas, como lo demuestra un valor-F global promedio de 0,80 aproximadamente utilizando varios modelos de recuento de contextos y en datos de corpus de distintos tamaños. No obstante, tanto el estado de la cuestión como los experimentos que realizamos destacaron una serie de retos para este tipo de modelos, que son reducir la escasez de datos del vector y dar cuenta de la polisemia nominal en las representaciones distribucionales de las palabras. En este contexto, los modelos de word embedding (WE) mantienen la ¿semántica¿ subyacente en las ocurrencias de un nombre en los datos de corpus asignándole un vector. Con esta elección, hemos sido capaces de superar el problema de la escasez de datos, como lo demuestra un valor-F general promedio de 0,91 para las clases semánticas de nombres de sentido único, a través de una combinación de la reducción de la dimensionalidad y de números reales. Además, las representaciones de WE obtuvieron un rendimiento superior en la gestión de las ocurrencias asimétricas de cada sentido de los nombres de tipo complejo polisémicos regulares en datos de corpus. Como resultado, hemos podido clasificar directamente esos nombres en su propia clase semántica con un valor-F global promedio de 0,85. La principal aportación de esta tesis consiste en una validación empírica de diferentes representaciones de distribución utilizadas para la clasificación semántica de nombres junto con una posterior expansión del trabajo anterior, lo que se traduce en recursos léxicos y conjuntos de datos innovadores que están disponibles de forma gratuita para su descarga y uso.