Relevancia de las variables meteorológicas en el diseño de un modelo de predicción de los niveles de ozono, en tiempo real, basado en el uso de redes neuronales

  1. Agirre Basurko, Elena 1
  2. Anta Sanz, Alvaro 2
  3. R. Barrón, Luis Javier 3
  4. Albizu Etxeberria, Marivi 4
  1. 1 Universidad del Pais Vasco, Escuela Universitaria de Ingeniería Técnica Industrial, La Casilla, 3 – 48012, Bilbao,
  2. 2 Egailan, Nieves Cano, 29 D – 01006, Vitoria-Gasteiz
  3. 3 Universidad del Pais Vasco, Facultad de Farmacia, Paseo de la Universidad, 7 – 01006, Vitoria-Gasteiz,
  4. 4 Gobierno Vasco, Departamento de Medio Ambiente y Ordenación del Territorio, Gran Vía, 85-8ª planta – 48013, Bilbao
Revista:
Acta de las Jornadas Científicas de la Asociación Meteorológica Española

ISSN: 2605-2199

Año de publicación: 2006

Título del ejemplar: XXIX Jornadas Científicas de la AME y el 7º Encuentro Hispano-Luso de Meteorología

Número: 29

Tipo: Artículo

Otras publicaciones en: Acta de las Jornadas Científicas de la Asociación Meteorológica Española

Resumen

La calidad del aire, el estudio de los principales contaminantes atmosféricos, el comportamiento de éstos, los niveles y focos de emisión, las variables que toman parte en la formación de estos contaminantes y aspectos similares han sido tema de investigación en las últimas décadas (Finlayson y Pitts, 1986). La vigilancia de los niveles registrados, la determinación de la evolución de los contaminantes atmosféricos así como la elaboración de modelos de predicción de los niveles de estos contaminantes son temas fundamentales  en el diseño de estrategias de control y vigilancia de la contaminación atmosférica, que permitirán mejorar la calidad del aire.

Referencias bibliográficas

  • Agirre, E., 2003. Elaboration of a statistical prognostic model for short-term real-time prediction of O3 and NO2 levels in the city of Bilbao. Ph. D. Universidad del Pais Vasco, Bilbao.
  • Agirre, E., Ibarra, G., Madariaga, I., 2006. Regresión and multilayer perceptron based models to forecast hourly O3 and NO2 levels in the Bilbao area.
  • Environmental Modelling and Software 21, 430-446.
  • Amari, S.I., Murata, N., Müller, K.R., Finke, M., Yang, H., 1997. Asymptotic statistical theory of overtraining and cross-validation. IEEE Transactions on Neural Networks 8, 985-996.
  • Cardelino, C., Chang, M., St. John, J., Murphey, B., Cordle, J., Ballagas, R., Patterson, K, Stogner, J., Zimmer-Dauphinee, S., 2001. Ozone predictions in Atlanta, Georgia: Analysis of the 1999 Ozone Season. Journal of the Air and Waste Management Association 51, 1227-1236.
  • Cassmassi J.C., 1998. Objective ozone forecasting in the South Coast Air Basin: Updating the objective prediction models for the late 1990s and southern California ozone study (SCOS97-NARSTO) application. Proceedings of the 12th Conference on Numerical Weather Prediction, Phoenix, AZ. American Meteorology Society, Boston, MA. Pp 5458.
  • Comrie A.C., 1997. Comparing neural networks and regression model for ozone forecasting. Journal of the Air & Waste Management Association 47, 653-663.
  • Elkamel, A., Abdul-Wahab, S., Bouhamra, W., Alper, E., 2001. Measurement and prediction of ozone levels around a heavily industrialized area: a neural network approach. Advances in Environmental Research 5, 4759.
  • European Commission, 1994. The Evaluation of Models of Heavy Gas Dispersion. Model Evaluation
  • Finlayson-Pitts, B.J., Pitts, J.N., 1986. Atmospheric chemistry: fundamentals and experimental techniques. Wiley, New York.
  • Gardner, M.W., Dorling, S.R., 1998 Artificial neural networks (the multilayer perceptron) – a review of applications in the atmospheric sciences. Atmospheric Environment 32 (14/15), 2627-2636.
  • Gardner, M.W., Dorling, S.R., 1999. Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmospheric Environment 33, 2627-2636.
  • Gardner, M.W., Dorling, S.R., 2000. Statistical surface ozone models: an improven methodology to account for non-linear behaviour. Atmospheric Environment 34, 21-34.
  • Garson G.D., 1991. Interpreting neural-network connection weights. AI Expert 6(7), 47-51.
  • Gobierno Vasco, 2001. Calidad del aire en la Comunidad Autónoma Vasca en el período 1996-2000. Servicio de Publicaciones del Gobierno Vasco, Vitoria-Gasteiz.
  • Gobierno Vasco, 2004. Aire-Ruido. Servicio de Publicaciones del Gobierno Vasco, Vitoria-Gasteiz.
  • Hanna, S.R., Strimaitis, D.G., Chang, J.C., 1991. Hazard response modeling uncertainty (a quantitative method). User’s guide for software for evaluating hazardous gas dispersion models. American Petroleum Institute, Washington.
  • Hornik K., Stinchcombe M., White H. 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2, 359-366. Kuang-Jung, H.,1992. Time series analysis of the interdependences among air pollutant. Atmospheric Environment 26B, 491-503.
  • Moller M.F., 1993. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6, 525-533.
  • Perez, P., Trier, A., Reyes, J., 2000. Prediction of PM2,5 concentrations several hours in advance using neural networks in Santiago, Chile. Atmospheric Environment 34, 1189-1196.
  • Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning internal representations by error propagation. MITT Press, Cambridge.
  • Sarle W.S., 1995. Stopped training and other remedies for overfitting. Proceedings on the 27th Symposium on The Interface.
  • Scheffe, R.D., Morris, R.E., 1993. A review of the development and application of the urban airshed model. Atmospheric Environment 27B, 23-39.
  • Simpson, R.W., Layton, A.P., 1983. Forecasting peak ozone levels. Atmospheric Environment 17, 16491654.
  • Zanetti, P., 1990. Air pollution modelling: Theories, Computational Methods and Available Software. Computational Mechanics Publications, Southampton, Boston.