Cyclone Performance Prediction Using Linear Regression Techniques
- Marina Corral Bobadilla 1
- Roberto Fernandez Martinez 2
- Rubén Lostado Lorza 1
- Fátima Somovilla Gomez 1
- Vergara Gonzalez, Eliseo P. 1
-
1
Universidad de La Rioja
info
-
2
Universidad del País Vasco/Euskal Herriko Unibertsitatea
info
Universidad del País Vasco/Euskal Herriko Unibertsitatea
Lejona, España
- Manuel Graña (coord.)
- José Manuel López-Guede (coord.)
- Oier Etxaniz (coord.)
- Álvaro Herrero (coord.)
- Héctor Quintián (coord.)
- Emilio Corchado (coord.)
Editorial: Springer Suiza
ISBN: 978-3-319-47364-2, 3-319-47364-6, 978-3-319-47363-5, 3-319-47363-8
Año de publicación: 2017
Páginas: 53-62
Congreso: International Conference on Computational Intelligence in Security for Information Systems (9. 2016. San Sebastián)
Tipo: Aportación congreso
Resumen
A wide range of industrial fields utilize cyclone separators and so, evaluating their performance according to different materials and varying operating conditions could contribute useful information and could also save these industries significant amounts of capital. This study models cyclone performance using linear regression techniques and low errors were obtained in comparison with the values obtained from real experiments. Linear regression and generalized linear regression techniques, simple and enhanced with Gradient Boosting techniques, were used to create linear models with low errors of approximately 0.83 % in cyclone performance.