Deficiencias de comprensión y epistémicas de los estudiantes universitarios en la construcción de categorías explicativas sobre las relaciones trabajo-energía

  1. Gutiérrez Berraondo, José 1
  2. Zuza, Kristina 2
  3. Zavala, Genaro 3
  4. Guisasola, Jenaro 2
  1. 1 Escuela de Ingeniería en Alternancia IMH
  2. 2 Escuela de Ingeniería de Gipuzkoa (UPV/EHU)
  3. 3 Tecnológico de Monterey
Revista:
Enseñanza de las ciencias: revista de investigación y experiencias didácticas

ISSN: 0212-4521 2174-6486

Año de publicación: 2022

Volumen: 40

Número: 1

Páginas: 47-64

Tipo: Artículo

DOI: 10.5565/REV/ENSCIENCIAS.3306 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Enseñanza de las ciencias: revista de investigación y experiencias didácticas

Resumen

La comprensión del principio generalizado de trabajo y energía es crucial para aplicar las relaciones de trabajo y energía en cursos de física general y en la toma de decisiones de la ciudadanía en problemas relacionados con consumo y transferencia de energía y máquinas. Se ha diseñado un cuestionario de preguntas abiertas para detectar dificultades de aprendizaje de los estudiantes en los conceptos implicados. El análisis de las respuestas se ha realizado mediante la metodología fenomenográfica, que se centra en establecer categorías interpretativas a nivel colectivo. Los resultados obtenidos muestran que los estudiantes no comprenden el concepto de trabajo y de energía y no reconocen la necesidad de modelización del análisis mediante un sistema. Algunos errores son más frecuentes en situaciones que involucran fuerzas de rozamiento. Las dificultades se manifiestan tanto a nivel conceptual como epistemológico.

Referencias bibliográficas

  • Arons, A. B. (1999). Development of energy concepts in introductory physics courses. American Journal of Physics, 67(12), 1063-1067. https://doi.org/10.1119/1.19182
  • Bächtold, M. y Guedj, M. (2014). Teaching Energy Informed by the History and Epistemology of the Concept with Implications for Teacher Education. En M. R. Matthews (Ed.), International Handbook of Research in History, Philosophy and Science Teaching (pp. 211-243). Dordrecht / Bruselas: Springer. https://doi.org/10.1007/978-94-007-7654-8_8
  • Bauman, R. H. (1992). Physics that textbook writers usually get wrong: II. Heat and energy. Physics Teacher, 30, 353-356. https://doi.org/10.1119/1.2343574
  • Besson, U. (2001). Work and Energy in the Presence of Friction: The Need for a Mesoscopic Analysis. European Journal of Physics, 22, 613-622. https://doi.org/10.1088/0143-0807/22/6/306
  • Besson, U., Borghi, L., De Ambrosis, A. y Mascheretti, P. (2007). How to teach friction: Experiments and models. American Journal of Physics, 75(12), 1106-1113. https://doi.org/10.1119/1.2779881
  • Beynon, J. (1990). Some myths surrounding energy. Physics Education, 25(6), 314-316. https://doi.org/10.1088/0031-9120/25/6/305
  • Boohan, R. y Ogborn, J. (1996). Energy and change: Introducing a new approach. Londres: Institute of Education, University of London. https://scholar.google.es
  • Bowden, J., Dall’Alba, G., Martin, E., Laurillard, D., Marton, F., Master, G. y Walsh, E. (1992). Displacement, velocity, and frames of reference: Phenomenographic studies of students’ understanding and some implications for teaching and assessment. American Journal of Physics, 60, 262. https://doi.org/10.1119/1.16907
  • Chabay, R., Sherwood, B. y Titus, A. (2019). A unified, contemporary approach to teaching energy in introductory physics. American Journal of Physics, 87(7), 504-509. https://doi.org/10.1119/1.5109519
  • Chrisholm, D. (1992). Some energetic thoughts. Physics Education, 27, 215-220. https://doi.org/10.1088/0031-9120/27/4/009
  • Cortazzi, M. (1993). Narrative Analysis. Brighton: Falmer Press. https://doi.org/10.4324/9781315067421
  • Dawson-Tunik, T. L. y Stein, Z. (2008). It has bounciness inside! En Developing conceptions of energy. https://scholar.google.es
  • Ding, L., Chabay, R. y Sherwood, B. (2013). How do students in an innovative principle based on mechanics course understand energy concepts? Journal of Research in Science Teaching, 50(6), 722-747. https://doi.org/10.1002/tea.21097
  • Doménech, J. L., Gil-Pérez, D., Gras-Martí, A., Guisasola, J., Martínez-Torregrosa, J, Salinas, J., Trumper, R., Valdés, P. y Vilches, A. (2007). Teaching of energy issues: a debate proposal for a global reorientation. Science & Education, 16(1), 43-64. https://doi.org/10.1007/s11191-005-5036-3
  • Doménech, J. L., Limiñana, R. y Menargues Marcilla, M. A. (2013). La superficialidad en la enseñanza del concepto de energía: una causa del limitado aprendizaje alcanzado por los estudiantes de bachillerato. Enseñanza de las Ciencias, 31(3), 103-119. https://scholar.google.es
  • Driver, R. (1989). Students’ conceptions and the learning of science. International Journal of Science Education, 11, 481-490. https://scholar.google.es
  • Driver, R. y Warrington, L. (1985). Students’ use of the principle of energy conservation in problem situations. Physics Education, 20(4), 171-176. https://doi.org/10.1088/0031-9120/20/4/308
  • Duit, R. (1981). Understanding Energy as Conserved Quantity-Remarks on the Article by R. U. Sexl. European Journal of Science Education, 3(3), 291-301. https://doi.org/10.1080/0140528810030306
  • Duit, R. (1986). In search of an energy concept. En R. Driver y R. Millar (Eds.), Energy matters (pp. 67-101). Leeds: University of Leeds. https://scholar.google.es
  • Duit, R., Treagust, D. y Mansfield, H. (1996). Investigating students understanding as prerequisite to improve teaching and learning in science and mathematics. En D. Treagust, R. Duit y B. J. Fraser (Eds.), Improving teaching and learning in science and mathematics (pp. 17-31). Nueva York: Teachers Press College. https://scholar.google.es
  • Ebenezer, J. y Fraser, D. (2001). First year chemical engineering students’ conceptions of energy in solution processes: Phenomenographic categories for common knowledge construction. Science Education, 85, 509. https://doi.org/10.1002/sce.1021
  • Engel Clough, E. y Driver, R. (1986). A study of consistency in the use of students’ conceptual framework across different task contexts. Science Education, 70(4), 473-496. https://doi.org/10.1002/sce.3730700412
  • Erlichson, H. (1977). Work and kinetic energy for an automobile coming to a stop. American Journal of Physics, 45(8), 769-769. https://doi.org/10.1119/1.10770
  • Fishbane, P. M., Gasiorowicz, S. y Thornton, S. T. (1994). Física: para ciencias e ingeniería. Hispanoamericana: Prentice Hall.
  • Gailiunas, P. (1988). Is energy a thing? Some misleading aspects of scientific language. School Science Review, 69, 587-590. https://scholar.google.es
  • Guisasola, J., Almudi, J. M. y Zuza, K. (2013). University students’ understanding of electromagnetic induction. International Journal of Science Education, 35(16), 2692-2717. https://doi.org/10.1080/09500693.2011.624134
  • Gutiérrez-Berraondo, J., Zuza, K., Zavala, G. y Guisasola, J. (2018). Ideas de los estudiantes universitarios sobre las relaciones trabajo y energía en Mecánica en cursos introductorios de Física. Caderno Brasileiro de Ensino de Física, 40(1). https://doi.org/10.1590/1806-9126-rbef-2017-0131
  • Hicks, N. (1983). Energy is the capacity to do work - or is it? Physics Teacher, 21, 529-530. https://doi.org/10.1119/1.2341393
  • Jewett, J. W. (2008a). Energy and the Confused Student II: Systems. The Physics Teacher, 46(4), 81-86. https://doi.org/10.1119/1.2834527
  • Jewett, J. W. (2008b). Energy and the Confused Student III: Language. The Physics Teacher, 46(4), 149-153. https://doi.org/10.1119/1.2840978.
  • Jewett, J. W. (2008c). Energy and the Confused Student IV: A Global Approach to Energy. The Physics Teacher, 46(4), 210-217. https://doi.org/10.1119/1.2895670
  • Jewett, J. W. (2008d). Energy and the Confused Students I: Work. The Physics Teacher, 46(4), 38-43. https://doi.org/10.1119/1.2823999
  • Larkin, J. H. y Rainard, B. (1984). A research methodology for studying how people think. Journal of Research in Science Teaching, 21(3), 235-254. https://doi.org/10.1002/tea.3660210302
  • Leach, J. y Scott, P. H. (2008). Teaching for the conceptual understanding: An approach drawing on individual and sociocultural perspective. En S. Vosniadou (Ed.), International handbook of research on conceptual change. (pp. 647-675). Nueva York / Londres: Routledge. https://scholar.google.es
  • Lindsey, B. A., Heron, P. R. y Shaffer, P. S. (2009). Student ability to apply the concepts of work and energy to extend systems. American Journal of Physics, 77(11), 999-1009. https://doi.org/10.1119/1.3183889
  • Lindsey, B. A., Heron, P. R. y Shaffer, P. S. (2012). Student understanding of energy: Difficulties related to systems. American Journal of Physics, 80(2), 154-163. https://doi.org/10.1119/1.3660661
  • Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies in Mathematics, 67, 255-276. https://doi.org/10.1007/s10649-007-9104-2
  • Mallinckrodt, A. J. y Leff, H. S. (1992). All about work. American Journal of Physics, 60(4), 356-365. https://doi.org/10.1119/1.16878
  • Marton, F. (1981). Phenomenography-Describing conceptions of the world around us. Instructional Science, 10, 177-200. https://doi.org/10.1007/bf00132516
  • Marton, F. y Booth, S. (1997). Learning and awareness. Mahwah, NJ: Lawrence Erlbaum Associates Publishers. https://scholar.google.es
  • Mestre, J. P., Thaden-Koch, T. C., Dufresne, J. y Grace, W. J. (2004). The dependence of knowledge deployment on context among Physics novices. En Research on Physics Education, Proceedings of the international School of Physics «Enrico Fermi». Ámsterdam: IOS Press. https://scholar.google.es
  • Mungan, C. E. (2005). A classic chase problem solved from a physics perspective. European Journal of Physics, 26(6), 985. https://doi.org/10.1088/0143-0807/26/6/005
  • Ogborn, J., Kress, G. y Martins, I. (1996). Explaining science in the classroom. Mcgraw-Hill Education. https://scholar.google.es
  • Papadouris, N., Constantinou, C. P. y Kyratsi, T. (2008). Students’ use of the energy model to account for changes in physical systems. Journal of Research in Science Teaching, 45(4), 444-469. https://doi.org/10.1002/tea.20235
  • Penchina, C. M. (1978). Pseudowork-energy principle. American Journal of Physics, 46(3), 295-296. https://doi.org/10.1119/1.11359
  • Prain, V. y Hand, B. (1999). Students perceptions of writing for learning in secondary school science. Science Education, 83(2), 151-162. https://doi.org/10.1002/(sici)1098-237x(199903)83:2<151::aid-sce4>3.0.co;2-s
  • Rivard, L. P. (1994). A review of writing to learn in science: Implications for practice and research. Journal of Research in Science Teaching, 31, 969-983. https://doi.org/10.1002/tea.3660310910
  • Romer, R. H. (2001). Heat is not noun. American Journal of Physics, 69, 107-109. https://doi.org/10.1119/1.1341254
  • Scott, P., Asoko, H. y Leach, J. (2008). Student conceptions and conceptual learning science. En A. K. Abell y N. G. Lederman (Eds.), Handbook of research on science education. Nueva York: Routledge. https://scholar.google.es
  • Sexl, R. U. (1981). Some observations concerning the teaching of the energy concept. European Journal of Science Education, 3, 285-289. https://doi.org/10.1080/0140528810030305
  • Sherwood, B. A. (1983). Pseudowork and real work. Journal of Physics, 51(7), 597-602. https://doi.org/10.1119/1.13173
  • Sherwood, B. A. y Bernard, W. H. (1984). Work and heat transfer in the presence of sliding friction. American Journal of Physics, 52(11), 1001-1007. https://doi.org/10.1119/1.13775
  • Taber, K. S. (2006). Constructivism’s new clothes: The trivial, the contingent and a progressive research programme into learning of science. Foundations of Chemistry, 8, 189-219. https://doi.org/10.1007/s10698-005-4536-1
  • Tahirsylaj, A., Niebert, K. y Duschl, R. (2016). Curriculum and didaktik in 21st century: Still divergent or converging? European Journal of Curriculum Studies, 2(2), 262-281. https://scholar.google.es
  • Tarsitani, C. y Vicentini, M. (1991). Calore, energía, entropía. Milán: Ed. Franco Angeli.
  • Tipler, P. A. y Mosca, G. (2005). Física para la ciencia y la tecnología. Reverte. https://scholar.google.es
  • Trumper, R. (1990). Being constructive: an alternative approach to the teaching of the energy concept part one. International Journal of Science Education, 12, 343-354. https://doi.org/10.1080/0950069900120402
  • Trumper, R. (1993). Children’s energy concepts: a cross-age study. International Journal of Science Education, 15, 139-148. https://doi.org/10.1080/0950069930150203
  • Viennot, L. (2001). Reasoning in Physics: The part of common sense. Springer Science / Business media. https://doi.org/10.5860/choice.39-4641
  • Vosniadou, S. (2012). Reframing the Classical Approach to Conceptual Change Preconceptions, Misconceptions and Synthetic Models. En B. J. Fraser, K. G. Tobin y C. J. McRobbie (Eds.), Second International Handbook of Science Education vol. I. Londres: Springer. https://doi.org/10.1007/978-1-4020-9041-7_10
  • Vygotsky, L. S. (1978). Interaction between learning and development. En M. Gauyain y M. Cole (Eds.), Readings on the development of children. Nueva York: W. H. Freeman and Company. https://doi.org/10.2307/j.ctvjf9vz4.11
  • Wandersee, J. H., Mintzes, J. J. y Novak, J. D. (1994). Research on alternative conceptions in Science. En D. L. Gabel (Ed.), Handbook of Research on Science teaching and Learning. Nueva York: McMillan Publications. https://scholar.google.es
  • Warren, J. W. (1982). The nature of energy. European Journal of Science Education, 4(3), 295-297. https://scholar.google.es
  • Watts, M., Gould, G. y Alsop, S. (1997). Questions of understanding: Categorising pupils’ questions in Science. School Science Review, 79, 57. https://doi.org/10.1080/0950069970190903
  • Zuza, K., Van Kampen, P., De Cock, M., Kelly, T. y Guisasola, J. (2018). Introductory university physics students’ of some key characteristics of classical theory of the electromagnetic field. Physical Review Physics Education Research, 14(2), 020117. https://doi.org/10.1103/physrevphyseducres.14.020117
  • Young, H. D. y Feedman, R. A. (2009). Sears-Zemansky Física Universitaria. México DF: Addison-Wesley. https://scholar.google.es