Potencial de las imágenes aéreas históricas y la fotogrametría automatizada para elaborar modelos 3D de cauces efímeros mediterráneos y cuantificar cambios morfológicos

  1. Gómez Gutiérrez, Álvaro
  2. Conesa-García, Carmelo
  3. Ibisate González de Matauco, Askoa
  4. Pérez-Cutillas, Pedro
  5. Portillo-Grau, Daniel
  6. Segura-Méndez, Francisco José
Revista:
Cuadernos de geografía

ISSN: 0210-086X 2695-7965

Año de publicación: 2021

Número: 107

Páginas: 243-268

Tipo: Artículo

DOI: 10.7203/CGUV.107.21119 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Cuadernos de geografía

Resumen

El estudio de la dinámica de los cauces efímeros mediterráneos (CEM) resulta de gran interés, al tratarse de sistemas geomorfológicos expuestos a importantes fluctuaciones recientes en los factores extrínsecos e intrínsecos que los gobiernan. Para obtener una aproximación a su modelo dinámico y comprender su adaptación a diferentes perturbaciones resulta vital el desarrollo de estudios a una escala temporal adecuada (décadas). En este trabajo, se analiza el potencial de los fotogramas aéreos históricos y la fotogrametría automatizada para generar modelos 3D y ortofotografías de CEM en diferentes fechas y tratar de analizar cambios morfológicos a partir de ellos. Se seleccionaron, a modo de ejemplo, varios tramos de dos ramblas en la cuenca del Segura (Rambla de Algeciras y Rambla de Valdelentisco) y otros tres en un curso efímero de la Cuenca del Ebro (Barranco de Tudela). Se emplearon fotogramas de los denominados vuelo americano B (1956) y vuelo interministerial (1973-1986), junto con puntos de apoyo naturales registrados con un sistema de posicionamiento global (GNSS) para alimentar técnicas de fotogrametría automatizada (Structure-from-Motion & Multi-View Stereo) y producir nubes de puntos, modelos digitales de superficie y ortofotografías. Fue necesario llevar a cabo algunas adaptaciones del flujo de trabajo fotogramétrico convencional a las características de los fotogramas (inclusión de marcas fiduciales, utilización de máscaras, uso de puntos naturales, etc.). Los resultados arrojaron un error cuadrático medio de los productos cartográficos que osciló entre 0,62 y 0,85 m con densidades volumétricas de las nubes de puntos resultantes de 1,03 a 4,47 pts·m-3. Por lo tanto, este enfoque metodológico podría emplearse en el análisis de cambios relevantes (>1 m) y para la descripción morfológica de los cauces e integrarse con cartografía reciente para una mejor compresión de su dinámica.

Referencias bibliográficas

  • Alfonso-Torreno, A., Gomez-Gutierrez, A., Schnabel, S., Lavado Contador, J. F., de Sanjose Blasco, J. J., & Sanchez Fernandez, M. (2019). sUAS, SfM-MVS photogrammetry and a topographic algorithm method to quantify the volume of sediments retained in check-dams. Sci Total Environ, 678, 369-382. https://doi.org/10.1016/j.scitotenv.2019.04.332
  • Alfonso-Torreño, A., Gómez-Gutiérrez, Á., & Schnabel, S. (2021). Dynamics of Erosion and Deposition in a Partially Restored Valley-Bottom Gully. Land, 10(1), 62. https://www.mdpi.com/2073-445X/10/1/62
  • Bakker, M., & Lane, S. N. (2017). Archival photogrammetric analysis of river–floodplain systems using Structure from Motion (SfM) methods. Earth Surface Processes and Landforms, 42(8), 1274-1286. https://doi.org/https://doi.org/10.1002/esp.4085
  • Besl, P. J., & McKay, N. D. (1992). A Method for Registration of 3-D Shapes [Article]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239-256. https://doi.org/10.1109/34.121791
  • Brutto, M. L., & Meli, P. (2012). Computer Vision Tools for 3D Modelling in Archaeology. International Journal of Heritage in the Digital Era, 1(1_suppl), 1-6. https://doi.org/10.1260/2047-4970.1.0.1
  • Conesa-Garcia, C. (1995). Torrential flow frequency and morphological adjustments of ephemeral channels in south-east Spain. In E. J. Hickin (Ed.), River Geomorphology (pp. 169-192). John Wiley & Sons.
  • Cowley, D. C., & Stichelbaut, B. B. (2012). Historic Aerial Photographic Archives for European Archaeology. European Journal of Archaeology, 15(2), 217-236. https://doi.org/10.1179/1461957112Y.0000000010
  • Cucchiaro, S., Maset, E., Fusiello, A., & Cazorzi, F. (2018). 4D-SfM photogrammetry for monitoring sediment dynamics in a debris-flow catchment: software testing and results comparison. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 281-288. https://doi.org/10.5194/isprs-archives-XLII-2-281-2018
  • Eltner, A., & Sofia, G. (2020). Structure from motion photogrammetric technique. In Remote Sensing of Geomorphology (pp. 1-24). https://doi.org/10.1016/b978-0-444-64177-9.00001-1
  • Feurer, D., & Vinatier, F. (2018). Joining multi-epoch archival aerial images in a single SfM block allows 3-D change detection with almost exclusively image information. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 495-506. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2018.10.016
  • García, C. (2005). Les ‘ramblas’ du Sud-est Espagnol: Systèmes hydromorphologiques en milieu méditerranéen sec. Zeitschrift fur Geomorphologie, 49, 205-224.
  • Gómez-Gutiérrez, A., & Goncalves, G. R. (2020). Surveying coastal cliffs using two UAV platforms (multirotor and fixed-wing) and three different approaches for the estimation of volumetric changes [Article]. International Journal of Remote Sensing, 41(21), 8143-8175. https://doi.org/10.1080/01431161.2020.1752950
  • Gomez-Gutierrez, A., Schnabel, S., Berenguer-Sempere, F., Lavado-Contador, F., & Rubio-Delgado, J. (2014). Using 3D photo-reconstruction methods to estimate gully headcut erosion. Catena, 120, 91-101. https://doi.org/10.1016/j.catena.2014.04.004
  • Gomez, C. (2014). Digital photogrammetry and GIS-based analysis of the bio-geomorphological evolution of Sakurajima Volcano, diachronic analysis from 1947 to 2006. Journal of Volcanology and Geothermal Research, 280, 1-13. https://doi.org/https://doi.org/10.1016/j.jvolgeores.2014.04.015
  • Guerin, A., Stock, G. M., Radue, M. J., Jaboyedoff, M., Collins, B. D., Matasci, B., Avdievitch, N., & Derron, M.-H. (2020). Quantifying 40 years of rockfall activity in Yosemite Valley with historical Structure-from-Motion photogrammetry and terrestrial laser scanning. Geomorphology, 356, 107069. https://doi.org/https://doi.org/10.1016/j.geomorph.2020.107069
  • James, M. R., & Robson, S. (2012). Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research: Earth Surface, 117(F3). https://doi.org/https://doi.org/10.1029/2011JF002289
  • James, M. R., & Robson, S. (2014). Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surface Processes and Landforms, 39(10), 1413-1420. https://doi.org/10.1002/esp.3609
  • Lague, D., Brodu, N., & Leroux, J. (2013). Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS Journal of Photogrammetry and Remote Sensing, 82, 10-26. https://doi.org/10.1016/j.isprsjprs.2013.04.009
  • Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision, 60(2), 91-110. https://doi.org/10.1023/b:visi.0000029664.99615.94
  • Mertes, J. R., Gulley, J. D., Benn, D. I., Thompson, S. S., & Nicholson, L. I. (2017). Using structure-from-motion to create glacier DEMs and orthoimagery from historical terrestrial and oblique aerial imagery. Earth Surface Processes and Landforms, 42(14), 2350-2364. https://doi.org/https://doi.org/10.1002/esp.4188
  • Mölg, N., & Bolch, T. (2017). Structure-from-Motion Using Historical Aerial Images to Analyse Changes in Glacier Surface Elevation. Remote Sensing, 9(10), 1021. https://www.mdpi.com/2072-4292/9/10/1021
  • Nouwakpo, S. K., Weltz, M. A., & McGwire, K. (2016). Assessing the performance of structure-from-motion photogrammetry and terrestrial LiDAR for reconstructing soil surface microtopography of naturally vegetated plots. Earth Surface Processes and Landforms, 41(3), 308-322. https://doi.org/10.1002/esp.3787
  • Qin, R., Tian, J., & Reinartz, P. (2016). 3D change detection – Approaches and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 122(Supplement C), 41-56. https://doi.org/10.1016/j.isprsjprs.2016.09.013
  • Remondino, F., Spera, M. G., Nocerino, E., Menna, F., & Nex, F. (2014). State of the art in high density image matching. The Photogrammetric Record, 29(146), 144-166. https://doi.org/https://doi.org/10.1111/phor.12063
  • Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. IEEE Conference on Computer Vision and Pattern Recognition, New York.
  • Tonkin, T. N., Midgley, N. G., Cook, S. J., & Graham, D. J. (2016). Ice-cored moraine degradation mapped and quantified using an unmanned aerial vehicle: A case study from a polythermal glacier in Svalbard. Geomorphology, 258, 1-10. https://doi.org/https://doi.org/10.1016/j.geomorph.2015.12.019
  • Ullman, S. (1979). The interpretation of structure from motion. Proceedings of the Royal Society B, 203, 405-426. https://doi.org/10.1098/rspb.1979.0006
  • Warrick, J. A., Ritchie, A. C., Adelman, G., Adelman, K., & Limber, P. W. (2016). New Techniques to Measure Cliff Change from Historical Oblique Aerial Photographs and Structure-from-Motion Photogrammetry. Journal of Coastal Research, 33(1), 39-55. https://doi.org/10.2112/jcoastres-d-16-00095.1
  • Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314. https://doi.org/https://doi.org/10.1016/j.geomorph.2012.08.021
  • Wheaton, J. M., Brasington, J., Darby, S. E., & Sear, D. A. (2010). Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surface Processes and Landforms, 35(2), 136-156. http://www.scopus.com/inward/record.url?eid=2-s2.0-77649140888&partnerID=40&md5=2ef93cc53edbd60a7e9a8e2fc3621789