Desarrollo y caracterización de un material compuesto de matriz de aluminio 6061 y partículas de TiB2

  1. Egizabal, P. 1
  2. Merchán, M. 1
  3. García-de-Cortázar, M.
  4. Plaza, L. M. 1
  5. Torregaray, A. 2
  1. 1 Tecnalia
    info

    Tecnalia

    Derio, España

  2. 2 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

Aldizkaria:
Revista de metalurgia

ISSN: 0034-8570

Argitalpen urtea: 2010

Alea: 46

Zenbakia: 0

Orrialdeak: 128-132

Mota: Artikulua

DOI: 10.3989/REVMETALMADRID.13XIIPMS DIALNET GOOGLE SCHOLAR lock_openSarbide irekia editor

Beste argitalpen batzuk: Revista de metalurgia

Laburpena

The incorporation of ceramic particles has been one of the ways developed to improve the mechanical properties of aluminium alloys during the last years. The main objective of this work has been to develop the manufacturing process of the reinforced aluminium alloy and analyse its mechanical properties and microstructure. Details about an innovative MMC manufacturing process and the results obtained in the development of a new family of TiB2- reinforced aluminium alloys for forging and extrusion applications are presented. It has been observed that the considered manufacturing process, consisting in the fabrication of particles by SHS and their incorporation into the selected alloy, is a feasible process to manufacture reinforced alloys that can be subsequently extruded or forged. The final result is the development of a material suitable for extrusion and forging applications and that presents an improvement of fatigue and tensile properties of the matrix alloy.

Erreferentzia bibliografikoak

  • [1] X.C. Tong, J.Mater. Sci. 33 (1998) 5.365-5.374.
  • [2] X.Wang, R. Brydson, A. Jha y J. Ellis, JMicrosc 196 (1999) 137-145. doi:10.1046/j.1365-2818.1999.00620.x PMid:10540266
  • [3] K.B. Lee, H.S. Sim y H. Kwon, Metall. Mater. Trans. A 36 (2005) 2.517-2.527.
  • [4] S.C. Tjong y Z.Y. Ma, Mater. Sci. Eng., A 29 (2000) 49-113.
  • [5] A.W. Urquhart,Mater. Sci. Eng. A 144 (1991) 75-82. doi:10.1016/0921-5093(91)90211-5
  • [6] A.K. Kuruvilla, K.S. Prasad, V.V. Bhanuprasad y Y.R. Mahajan, Scr. Metall. Mater. 24 (1990) 873-878. doi:10.1016/0956-716X(90)90128-4
  • [7] P. Sahoo yM.J. Koczak,Mater. Sci. Eng. A 144 (1991) 37-44.
  • [8] M. J. Koczak y K. S. Kumar, US Patent 4.808.372 (1998).
  • [9] T. Fan, G. Yang y D. Zhang, Metall. Mater. Trans. A 36 (2005) 225-233. doi:10.1007/s11661-005-0154-8
  • [10] I. Gotman, M.J. Koczak y E. Shtessel, Mater. Sci. Eng. A 187 (1994) 189-199. doi:10.1016/0921-5093(94)90347-6
  • [11] C. Bartels., D. Raabe, G. Gottstein y U. Huber, Mater. Sci. Eng. A 237 (1997) 12-23. doi:10.1016/S0921-5093(97)00104-4
  • [12] R.M. Aikin, JOM. 49 (1997) 35-39. doi:10.1007/BF02914400
  • [13] M.D. Salvador, V. Amigo, N. Martínez y C. Gerrer, J. Mater. Process. Tech. 143-144 (2003) 598-564. doi:10.1016/S0924-0136(03)00438-2
  • [14] E. Fras, S. Wierzbinski, A. Janas y H.F. Lopez, Metall.Mater. Trans. A 33 (2002) 3.831-3.838.
  • [15] M.S. Song,M.X. Zhang, S.G. Zhang, B. Huang y J.G. Li, Mater. Sci. Eng. A 473 (2008) 166- 171. doi:10.1016/j.msea.2007.03.086
  • [16] P. Li, E.G. Kandalova y V.I. Nikitin,Mater. Lett. 59 (2005) 2.545-2.548.
  • [17] P. Li, E.G. Kandalova, V.I. Nikitin, A.G. Makarenko, A.R. Luts, Z. Yanfei, Scr. Mater., 49 (2003) 699-703. doi:10.1016/S1359-6462(03)00402-0
  • [18] K.T. Lee, L. Lu yM.O. Lai,Mater. Sci. Technol. 17 (2001) 201-206.
  • [19] S.D. Henry, G.M. Davidson, S.R. Lampman, F. Reidenbach, R.L. Boring y W.W. Scott, Fatigue Data Book: Light Structural Alloys, 1ª edición, ASM International, Materials Park, (OH) EE. UU., 1995, pp. 1-397.