Ahalmen espazialaren ikerketa bat Haur Hezkuntzan.

  1. Arrieta Cortajarena, Iera 1
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

Revista:
Tantak: Euskal Herriko Unibertsitateko hezkuntza aldizkaria

ISSN: 0214-9753

Año de publicación: 2020

Volumen: 32

Número: 1

Páginas: 9-31

Tipo: Artículo

DOI: 10.1387/TANTAK.21019 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Tantak: Euskal Herriko Unibertsitateko hezkuntza aldizkaria

Resumen

Since the second half of the twentieth century the importance of the spatial ability in teaching-learning mathematics has been emphasized, especially in geometry, so many researchers have focused on its study. However, due to the diversity of definitions and concepts associated with such ability, it is not easy to set up a solid model to represent it. In this paper a theoretical model is proposed, empirically tested, that allows to evaluate the spatial ability of the students of Childhood Education in order to offer them an individualized attention. Based on the established model, the possible differences between girls and boys in spatial ability are also analyzed, so common in the literature related to this topic.

Referencias bibliográficas

  • Arrieta, M. (2006). La capacidad espacial en la educación matemática: estructura y medida. Educación Matemática, 18(1), 125-158.
  • Battista, M. T. (1990). Spatial visualization and gender differences in high school geometry, Journal for Research in Mathematics Education, 21(1), 47-60.
  • Bickley, P.G., Keith, T. Z., eta Wolfle, L. M. (1995). The three-stratum theory of cognitive abilities: Test of the structure of intelligence across the life span. Intelligence, 20, 309-328.
  • Bishop, A. J. (1983). Space and geometry. In R. Lesh, & M. Landau (eds.), Adquisition of mathematics concepts and processes (pp. 175-203). New York: Academic Press.
  • Canals, M. A. (1997). La geometría en las primeras edades escolares. Suma, 25, 31-44.
  • Carroll, J. B. (1993). Human cognitive abilities. Cambridge: University Press.
  • Clements, D. H., Battista, M. T., Sarama, J., eta Swaminathan, S. (1997). Development of students’ spatial thinking in a unit on geometric motions and area. The Elementary School Journal, 98, 171-186.
  • Cunningham, S. A., eta Reagan, C. L. (1972). Handbook of visual perceptual training. Springfield, IL: Charles C. Thomas Publisher.
  • Cheng, Y. L. eta Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15, 2-11.
  • Del Grande, J. J. (1987). Spatial perception and primary geometry. Learning and Teaching Geometry, K-12, 126-135.
  • Frick, A., Hansen, M. A., eta Newcombe, N. S. (2013). Development of mental rotation in 3- to 5-year-old children. Cognitive Development, 28(4), 386-399.
  • Frostig, M. (1988). Test de desarrollo de la percepción visual. Madrid: TEA.
  • Frostig, M., eta Horne, D. (1964). The Frostig Program for the development of visual perception. Chicago: Follett Publishing Co.
  • Ganley, C. M., Vasilyeva, M. eta Dulaney, A. (2014), Spatial Ability Mediates the Gender Difference in Middle School Students’ Science Performance. Child Development, 85, 1419-1432.
  • Goldsmith, L. T., Hetland, L., Hoyle, C., eta Winner, E. (2016). Visual-spatial thinking in geometry and the visual arts. Psychology of Aesthetics, Creativity, and the Arts, 10(1), 56-71.
  • Gunderson, E. A., Ramirez, G., Beilock, S. L., eta Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Development Psychology, 48(5), 1229-1241.
  • Gutiérrez, A. (1991). La investigación en didáctica de las matemáticas. In A. Gutiérrez (arg.), Área de conocimiento Didáctica de la Matemática, colección «Matemáticas: Cultura y aprendizaje», 1 (pp. 149-194). Madrid: Síntesis.
  • Hawes, Z., Moss, J., Caswell, B., eta Poliszczuk, D. (2015). Effects of mental rotation training on children’s spatial and mathematics performance: A randomized controlled study. Trends in Neuroscience & Education, 4, 60-68.
  • Hoffer, A. R. (1977). Mathematics resource project. Geometry and visualization. Palo Alto: Creative Publications.
  • Kell, H. J., Lubinski, D., Benbow, C. P., eta Steiger, J. M. (2013). Creativity and Technical Innovation: Spatial Ability’s Unique Role. Psychological Science, 24(9), 1831-1836.
  • Lauer, J. E. eta Lourenco, S. F. (2016). Spatial processing in infancy predicts both spatial and mathematical aptitude in childhood. Psychological Science, 27(10), 1291-1298.
  • Lauer, J. E., Udelson, H. B., Jeon, S. O., eta Lourenco, S. F. (2015). An early sex difference in the relation between mental rotation and object preference. Frontiers in Psychology, 6, 1-8.
  • Lehmann, J., Jansen, P., eta Quaiser-Pohl, C. M. (2014). Correlation of motor skill, mental rotation, and working memory in 3- to 6-year-old children. European Journal of Developmental Psychology, 4, 1-14.
  • Linn, M. C., eta Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479-1498.
  • Maccoby, E. E., eta Jacklin, C. N. (1974). The Psychology of Sex Differences. Stanford: University press.
  • Maris, S., eta Noriega, M. (2010). La competencia espacial. Evaluación en alumnos de nuevo ingreso a la universidad. Educación Matemática, 22(2), 65-91.
  • Martin, N. (2006). Test of visual perceptual skills. USA: Academic Therapy Publications.
  • Martin, M. O., Mullis, I. V. S., eta Stanco, G. M. (2012). TIMSS 2011 international results in science. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
  • Mix, K. S. eta Cheng, Y. L. (2012). The relation between space and math: Developmental and educational implications. In J. B. Benson (arg.), Advances in child development and behavior, 42 (pp. 197-243). San Diego, CA: Academic Press.
  • Möhring, W., eta Frick, A. (2013). Touching up mental rotation: effects of manual experience on 6-month-old infants’ mental object rotation. Child Development, 84(5), 1554-1565.
  • NCTM (2000). Curriculum and evaluation standards for school mathematics. Reston, VA: NCTM.
  • Newcombe, N. S. (2010). Picture this: Increasing math and science learning by improving spatial thinking. American Educator, 34, 29-35, 43.
  • Piaget, J. (1954). The construction of reality in the child. New York: Basic Books.
  • Quinn, P. C., eta Liben, L. S. (2014). A sex difference in mental rotation in infants: convergent evidence. Infancy, 19, 103-116.
  • Sarasua, J. (2010). Hacia una categorización de los objetivos geométricos. Propuesta de nuevos descriptores de los niveles de Van Hiele para la representación externa de figuras planas (Tesis doctoral). Euskal Herriko Unibertsitatea, Euskal Herria.
  • Schwarzer, G., Freitag, C., Buckel, R., eta Lofruthe, A. (2013). Crawling is associated with mental rotation ability by 9-month-old infants. Infancy, 18, 432- 441.
  • Tartre, L. A. (1990). Spatial orientation skill and mathematical problem solving. Journal for Research in Mathematics Education, 21(3), 216-229.
  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., eta Newcombe, N. S. (2013). The malleability of spatial skills: a meta-analysis of training studies. Psychological Bulletin, 139, 352-402.
  • Uttal, D. H., Miller, D. I., eta Newcombe, N. S. (2013). Exploring and Enhancing Spatial Thinking: Links to Achievement in Science, Technology, Engineering, and Mathematics? Current Directions in Psychological Science, 22(5), 367- 373.
  • Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., eta Newcombe, N. S. (2014). Finding the missing piece: blocks, puzzles, and shapes fuel school readiness. Trends in Neuroscience and Education, 3(1), 7-13.
  • Vereecken, P. (1961). Spatial development. Constructive praxia from birth to the age of seven. Groninga: J. B. Wolters.
  • Vurpillot, E. (1976). The visual world of the child. London: George Allen & Unwin.