Metodología de selección de especies de arbolado para el sombreado urbano en la parte oriental de la cornisa Cantábrica

  1. Azcarate Mutiloa, I. 1
  2. Acero Alejandro, J. Á. 2
  3. Arrizabalaga Ibarzabal, J. 2
  1. 1 Departamento de Arquitectura. Universidad del País Vasco/Euskal Herriko Unibertsitatea, España
  2. 2 Energy and Environmental Division, Tecnalia, España
Journal:
Informes de la construcción

ISSN: 0020-0883

Year of publication: 2019

Volume: 71

Issue: 556

Type: Article

DOI: 10.3989/IC.65135 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Informes de la construcción

Sustainable development goals

Abstract

La mitigación del efecto Isla de Calor es uno de los mayores retos del futuro en las ciudades debido al cambio climático. Uno de los métodos para conseguir el enfriamiento de los espacios urbanos es la atenuación de radiación solar proporcionada por el arbolado. En el presente artículo se plantea una metodología de selección de especies arbóreas para la mejora del confort térmico en zonas urbanizadas de la parte oriental de la cornisa cantábrica. Partiendo de una preselección de especies autóctonas, se obtiene una clasificación de diversas especies aptas para el sombreado describiéndose sus principales características y su posible ámbito de utilización en función de la tipología de espacio urbano.

Bibliographic References

  • (1) IPPC. Intergovernmental panel on climate change (2014). Mitigation of climate change. Chapter 12: Human settlements, infrastructure, and spatial planning. pp. 923-1000. https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter12.pdf
  • (2) Brysse, K., Oreskes, N., O’Reilly, J., Oppenheimer, M. (2013). Climate change prediction: Erring on the side of least drama?. Global Environmental Change, 23(1): 327-337.
  • (3) Bowler, D.E., Buyung-Ali, L., Knight, T.M., Pullin, A.S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3): 147-155.
  • (4) Dimoudi, A., Nikolopoulou, M. (2003). Vegetation in the urban environment: Microclimatic analysis and benefits. Energy and Buildings, 35(1): 69-76.
  • (5) Klemm, W., Heusinkveld, B.G., Lenzholzer, S., van Hove, B. (2015). Street greenery and its physical and psychological impact on thermal comfort. Landscape and Urban Planning, 138: 87-98.
  • (6) Nowak, D.J., Crane, D.E., Stevens, J.C. (2006). Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening, 4(3-4): 115-123.
  • (7) Wolch, J.R., Byrne, J., Newell, J.P. (2014). Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landscape and Urban Planning, 125: 234-244.
  • (8) Park, M., Hagishima, A., Tanimoto, J., Narita, K. (2012). Effect of urban vegetation on outdoor thermal environment: Field measurement at a scale model site. Building and Environment, 56: 38-46.
  • (9) Grahn, P., Stigsdotter, U.K. (2010). The relation between perceived sensory dimensions of urban green space and stress restoration. Landscape and Urban Planning, 94(3): 264-275.
  • (10) Hartig, T. (2008). Green space, psychological restoration, and health inequality. The Lancet, 372(9650): 1614-1615.
  • (11) Mayer, H., Hoppe, P. (1987). Thermal comfort of man in different urban environments. Theoretical and Applied Climatology, 38(1): 43-49.
  • (12) AENOR (2006). Norma UNE-EN ISO 7730:2006- ergonomía del ambiente térmico. Determinación analítica e interpretación del bienestar térmico mediante el cálculo de los índices PMV y PPD y los criterios de bienestar térmico local. Asociación Española de Normalización.
  • (13) Santamouris, M., Gaitani, N., Spanou, A., et al. (2012). Using cool paving materials to improve microclimate of urban areas – design realization and results of the flisvos project. Building and Environment, 53: 128-136.
  • (14) Acero, J.A., Herranz-Pascual, K. (2015). A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques. Building and Environment, 93: 245-257.
  • (15) Lau, K.K., Ren, C., Ho, J., Ng, E. (2016). Numerical modelling of mean radiant temperature in high-density sub-tropical urban environment. Energy and Buildings, 114: 80-86.
  • (16) Kong, L., Lau, K.K., Yuan, C., et al. (2017). Regulation of outdoor thermal comfort by trees in Hong Kong. Sustainable Cities and Society, 31: 12-25.
  • (17) Berry, R., Livesley, S.J., Aye, L. (2013). Tree canopy shade impacts on solar irradiance received by building walls and their surface temperature. Building and Environment, 69: 91-100.
  • (18) Morakinyo, T.E., Kong, L., Lau, K.K., Yuan, C., Ng, E. (2017). A study on the impact of shadow-cast and tree species on in-canyon and neighborhood’s thermal comfort. Building and Environment, 115: 1-17.
  • (19) Kotzen, B. (2003). An investigation of shade under six different tree species of the Negev desert towards their potential use for enhancing microclimatic conditions in landscape architectural development. Journal of Arid Environments, 55(2): 231-274.
  • (20) Pinty, B., Gobron, N., Widlowski, J., Verstraete, M. (2003). Allometric Relationships of Selected European Tree Species. Betula pubescens, Fagus sylvatica, Larix decidua, Picea abies, Pinus sylvestris. Ispra (Italy): European Commission- Joint Research Centre.
  • (21) Hongbing, W., Jun, Q., Yonghong, H., Li, D. (2010). Optimal tree design for daylighting in residential buildings. Building and Environment, 45(12): 2594-2606.
  • (22) Brown, R.D., Vanos, J., Kenny, N., Lenzholzer, S. (2015). Designing urban parks that ameliorate the effects of climate change. Landscape and Urban Planning, 138: 118-31.
  • (23) Watson, D.J. (1947). Comparative physiological studies on the growth of field crops: I. variation in net assimilation rate and leaf area between species and varieties, and within and between years. A nnals of Botany, 11(41): 41-76. http://www.jstor.org/stable/42907002
  • (24) Weiss, M., Baret, F., Smith, G.J., Jonckheere, I., Coppin, P. (2004). Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology, 121(1): 37-53.
  • (25) Vogt, J., Gillner, S., Hofmann, M., et al. (2017). Citree: A database supporting tree selection for urban areas in temperate climate. Landscape and Urban Planning, 157: 14-25.
  • (26) Morakinyo, T.E., Lam, Y.F. (2016). Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon’s micro-climate and thermal comfort. Building and Environment, 103: 262-275.
  • (27) Ali-Toudert, F., Mayer, H. (2006). Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment, 41(2): 94-108.
  • (28) Qaid, A., Ossen, D.R. (2015). Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions. Int. J. Biometeorol., 59(6): 657-677.
  • (29) Theeuwes, N.E., Steeneveld, G.J., Ronda, R.J., Heusinkveld, B.G., van Hove, L.W.A., Holtslag, A.A.M. (2014). Seasonal dependence of the urban heat island on the street canyon aspect ratio. Q J R Meteorol Soc., 140(684): 2197-2210.
  • (30) Spangenberg, J. (2010). Nature in megacities. São Paulo/Brazil – a case study, PhD thesis. Weimar: Bauhaus-Universität.
  • (31) Aizpuru, I., Catalán, P., Garín, F. (1996). Euskal Herriko zuhaitz eta zuhaisken liburua. Vitoria-Gasteiz: Servicio Central de publicaciones del Gobierno Vasco.
  • (32) Pérez, F.P. (2003). Euskal Herriko zuhaitzak. Argitaletxea: ADEVE, Asociación para la Defensa de las Especies en Vías de Extinción.
  • (33) Sabaté, S., Gracia, C.A., Sánchez, A. (2002). Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. Forest Ecology and Management, 162(1): 23-37.