Plus vite en Minimax. Effet des coulées sur la vitesse en 100m 4 nages chez 67 nageurs non experts

  1. Luc Collard
  2. Corinne Fantoni
  3. Joseba Etxebeste Otegi
Revista:
Acciónmotriz

ISSN: 1989-2837

Año de publicación: 2018

Número: 21

Páginas: 29-36

Tipo: Artículo

Otras publicaciones en: Acciónmotriz

Resumen

Se comparan los tiempos de 67 nadadores durante la realización de dos pruebas de 100 metros estilos en piscina de 25 m. En el primer intento se nadan los 100 metros estilos lo más rápidamente posible y sin ninguna restricción. Para los segundos 100 m, los nadadores deben usar su “minimax” – mínimo número de brazada en superficie y la máxima velocidad en función de una tabla-baremo previamente establecida. De este modo, se les empuja a valorar las oscilaciones corporales subacuáticas permitidas por el reglamento de la federación de natación. Todos los nadadores están convencidos de tener un mejor rendimiento en los primeros 100 m estilos sin restricción que en los segundos, aunque los 29 mejores nadadores del grupo son más rápidos al maximizar sus inmersiones en el evento “minimax”.

Referencias bibliográficas

  • Arellano, R., Pardillo, S., & Gavilán, A. (2002). Underwater undulatory swimming: Kinematic characteristics, vortex generation and application during the start, turn and swimming strokes. In Proceedings of the XXth International Symposium on Biomechanics in Sports, Universidad de Granada.
  • Atkison, R. R., Dickey, J. P., Dragunas, A., & Nolte, V. (2014). Importance of sagittal kick symmetry for underwater dolphin kick performance. Human movement science, 33, 298-311.
  • Averianova, A., Nikodelis, T., Konstantakos, V., & Kollias, I. (2016). Rotational kinematics of pelvis and upper trunk at butterfly stroke: Can fins affect the dynamics of the system?. Journal of Biomechanics.
  • Brown, R.M., Counsilman, J.E. (1971). The role of lift in propelling swimmers. In J.M. Cooper (Ed.), Biomechanics (pp. 179-188). Chicago: Athletic Institute.
  • Cappaert, J. & Rushall, B.S. (1994). Biomechanical analyses of champion swimmers, Spring Valley, CA: Sports Sciences Associates.
  • Chauvaud, F. (2007). Corps submergés, corps engloutis: une histoire des noyés et de la noyade de l’Antiquité à nos jours. Amherst Media, Inc.
  • Choi, T. (2015). Learning from the Dolphins: How Anterior Motion Affects the Dolphin Kick. Bulletin of the American Physical Society, 60.
  • Chollet, D. (2000). Natation sportive, approche scientifique. Paris: Vigot.
  • Collard, L., Auvray, E., & Bellaunay, I. (2008). Why have swimmers neglected the “fish kick” technique? International Journal of Performance Analysis in Sport, 8(3), 18-26.
  • Collard, L. La cinquième nage. Natation & théorie de l’évolution. Paris: Atlantica.
  • Collard, L., Gourmelin, E., & Schwob, V. (2013). The fifth stroke: the effect of learning the dolphin-kick technique on swimming speed in 22 novice swimmers. Journal of Swimming Research, 21(1).
  • Colobert, B., Bideau, B., Nicolas, G, Fusco, N. (2004). Théorie des corps allongés pour la nage avec palmes. In Pelayo (Ed), 3ème Journées Spécialisées de Natation (pp. 131-132). Lille : publibook.
  • Connaboy, C., Naemi, R., Brown, S., Psycharakis, S., McCabe, C., Coleman, S., & Sanders, R. (2015). The key kinematic determinants of undulatory underwater swimming at maximal velocity. Journal of Sports Sciences, 1-8.
  • Counsilman, J. E. (1986). Competitive swimming manuel. Indiana: Counsilman Co Inc.
  • Figueiredo, P., Toussaint, H. M., Vilas-Boas, J. P., & Fernandes, R. J. (2013). Relation between efficiency and energy cost with coordination in aquatic locomotion. European journal of applied physiology, 113(3), 651-659.
  • Fish, F.E. (1993). Power output and propulsive efficiency of swimming bottlenose dolphins. J. Exp. Biol., 185:179-193.
  • Fish, F.E. (1996). Transitions from drag-based to lift-based propulsion in mammalian swimming. Amer. Zool., 36: 628-641.
  • Gatta, G., Cortesi, M., & Di Michele, R. (2012). Power production of the lower limbs in flutter-kick swimming. Sports Biomechanics, 11(4), 480-491.
  • Gray, J. (1936). Studies on animal locomotion. VI. The propulsive powers of the dolphin. J. Exp Biol. Vol 13, 192-199.
  • Guillaume, J.L., Piat, E. (2003). Conception et modélisation d’un microrobot nageur. RS-JESA, vol 37, 1, 31-48.
  • Hertel, H. (1966). Structure, form, movement. New York: Reinhold.
  • Hillmeyer, S. R. (2015). The Effect of Different Styles of Underwater Kicking on Velocity in Swimming.
  • Holt, L.E. (1989). Swimming velocity with and without lift forces. Unpublished paper, Sports Sciences Laboratory, Canada: Dalhousie University.
  • Lighthill, M.J. (1960). Note on the swimming of slender fish. J. Fluid Mech., 9: 305-317.
  • Lighthill, M.J. (1969). Hydrodynamics of aquatic animal propulsiona survey. Ann. Rev. Fluid Mech., 1: 413-446.
  • Lighthill, M.J. (1975). Mathematical biofluiddynamics. Philadelphia: SIAM.
  • Lindsey, C.C. (1978). Form, function and locomotory habits in fish. In W.S. Hoar & D.J. Randall (Eds). Fish Physiology, vol VII. Locomotion (pp. 1-100), New York.
  • Maglischo, E.W. (1982). Swimming faster. Chico : Mayfield Publishing Compagny.
  • Martin, J. (2015). Go Fast With The Flow. Mechanical Engineering, 137(5), 40.
  • Mauss, M. (1936). Les techniques du corps. Journal de psychologie, 32(3-4), 365-86.
  • Müller, U.K., Van Den Heuvel B. L. E., Stamhuis, E.J., Videler J.J. (1997). Fish foot prints: morphology and energetics of the wake behind continuously swimming mullet. J. Exp Biol., 200: 2893-2906.
  • Parlebas, P. (1984). La dissipation sportive, Culture Technique, 13, 19-37.
  • Parlebas, P. (1999). Les tactiques du corps. In Approches de la culture matérielle. Corps à corps avec l’objet. Paris : L’Harmattan, pp. 29-43.
  • Pelayo, P., Sidney, M., Kherif, T., Chollet, D., & Tourny, C. (1996). Stroking Characteristics in Freestyle Swimming and Relationships With Anthropometric Characteristics. Journal of applied biomechanics, 12(2).
  • Perelli, A., Leoncini, D. A., Sandroni, G., Faggioni, O., Zunino, R., & Soldani, M. (2013). Design and performance analysis of the mechanical structure of a piezoelectric generator by Von Karman vortexes for underwater energy harvesting. In OCEANS-Bergen, 2013 MTS/IEEE (pp. 1-8). IEEE.
  • Sanders, R.H. (1997a). Extending the ‘Schleihauf’ model for estimating forces produced by a swimmer’s hand. In B.O. Eriksson & L. Gullstrand (Eds), Proceedings of the XII FINA World Congress on Sports Medicine (pp. 421-428). Goteborg, Sweden: Chalmers Reproservice.
  • Sanders, R.H. (1997b). Hydrodynamic characteristics of a swimmer’s hand with adducted thumb: implications for technique. In B.O. Eriksson & L. Gullstrand (Eds), Proceedings of the XII FINA World Congress on Sports Medicine (pp. 429-434). Goteborg, Sweden: Chalmers Reproservice.
  • Sanders, R.H. (1998). Lifting Performance in aquatic sports. Keynote address at the XVI International Symposium of Biomechanics in Sports, Konstanz, Germany, 21-25/07.
  • Schleihauf, R.E. (1978). Swimming propulsion: a hydrodynamic analysis, Fort Laudedale, Floride : American Swimming Coaches Association.
  • Schouveiler, L., Hover, F.S., Triantafyllou, M.S. (2005). Performance of flapping foil propulsion. J. Fluids Struct., 20: 949-959.
  • Sfakiotakis, M., Lane, D.M, Davies, B. (1999). Review of fish swimming modes for aquatic locomotion. IEEE, J. Oceanic Engineering, vol 24, 2, 237252.
  • Shubik, M. 1982, Game Theory in the Social Sciences, Massachusetts Institute of Technology, The MIT press.
  • Sidney, M. (1996). Tethered forces in crawl stroke and their relationship to antropometric characteristics and sprint swimming performance, Journal of human movement studies, 31.
  • Smith, L. (1978). Anthropometric measurements, and arm and leg speed performance of male and female swimmers as predictor of swim speed, Journal of sports medicine and physical fitness, 18.
  • Sprigings, E. J. & Koehler, J.A. (1990). The choice between Bernoulli’s or Newton’s model in predicting dynamic lift, International Journal of Sport Biomechanics, 6, 235-245.
  • Troup, J.P. (1992). International Center for Aquatic Research Annual: studies by the International Center for Aquatic Research 1991-92, Colorado Springs, CO: United States Swimming Press.
  • Vennell R., Pease D., Wilson, B. (2006). Wave drag on human swimmers. J Biomech. 39(4): 664-671.
  • Webb, P.W. (1975). Hydrodynamics and energetics of fish propulsion. Bull Fish Res Bd Can., 190: 149-158.
  • Wei, T., Mark, R., & Hutchison, S. (2014). The fluid dynamics of competitive swimming. Annual Review of Fluid Mechanics, 46, 547-565.
  • Von Loebbecke, A., Mittal, R., Fish, F., & Mark, R. (2009). Propulsive efficiency of the underwater dolphin kick in humans. Journal of biomechanical engineering, 131(5), 54504.
  • Williams, T.M., Frield, W.A., Fong, M.L., Yamada, R.M. (1992). Travel at low energetic cost by swimming and wave-riding bottlenose dolphins. Nature, 355: 821-823.
  • Wood, T.C. & Holt, L.E. (1979). A fluid dynamic analysis of the propulsive potential of the hand and forearm in swimming, in Swimming III, Baltimore, MD: University Park Press.
  • Zamparo, P., Bonifazi, M., Faina M., Milan A. (2005). Energy cost of swimming of elite long distance swimmers. Eur J Appl Physiol., 94(5-6): 697-704.