Plus vite en Minimax. Effet des coulées sur la vitesse en 100m 4 nages chez 67 nageurs non experts

  1. Luc Collard
  2. Corinne Fantoni
  3. Joseba Etxebeste Otegi
Revista:
Acciónmotriz

ISSN: 1989-2837

Año de publicación: 2018

Número: 21

Páginas: 29-36

Tipo: Artículo

Otras publicaciones en: Acciónmotriz

Resumen

Les performances chronométriques de 67 nageurs sont comparées lors de la réalisation de deux 100m 4 nages en petit bassin (25m). Le premier 100m est nagé sans contrainte, le plus vite possible. Pour le second 100m, les nageurs doivent utiliser leur « minimax » – minimum de coups de bras en surface et maximum de vitesse – selon un barème préalablement établi. Ils sont ainsi amenés à valoriser les ondulations sous-marines dans le respect réglementaire. Tous les nageurs sont convaincus d’être plus performants lors du premier 4 nages sans contrainte, alors que les 29 meilleurs du groupe vont plus vite en maximisant leurs immersions dans l’épreuve du «minimax».

Referencias bibliográficas

  • Arellano, R., Pardillo, S., & Gavilán, A. (2002). Underwater undulatory swimming: Kinematic characteristics, vortex generation and application during the start, turn and swimming strokes. In Proceedings of the XXth International Symposium on Biomechanics in Sports, Universidad de Granada.
  • Atkison, R. R., Dickey, J. P., Dragunas, A., & Nolte, V. (2014). Importance of sagittal kick symmetry for underwater dolphin kick performance. Human movement science, 33, 298-311.
  • Averianova, A., Nikodelis, T., Konstantakos, V., & Kollias, I. (2016). Rotational kinematics of pelvis and upper trunk at butterfly stroke: Can fins affect the dynamics of the system?. Journal of Biomechanics.
  • Brown, R.M., Counsilman, J.E. (1971). The role of lift in propelling swimmers. In J.M. Cooper (Ed.), Biomechanics (pp. 179-188). Chicago: Athletic Institute.
  • Cappaert, J. & Rushall, B.S. (1994). Biomechanical analyses of champion swimmers, Spring Valley, CA: Sports Sciences Associates.
  • Chauvaud, F. (2007). Corps submergés, corps engloutis: une histoire des noyés et de la noyade de l’Antiquité à nos jours. Amherst Media, Inc.
  • Choi, T. (2015). Learning from the Dolphins: How Anterior Motion Affects the Dolphin Kick. Bulletin of the American Physical Society, 60.
  • Chollet, D. (2000). Natation sportive, approche scientifique. Paris: Vigot.
  • Collard, L., Auvray, E., & Bellaunay, I. (2008). Why have swimmers neglected the “fish kick” technique? International Journal of Performance Analysis in Sport, 8(3), 18-26.
  • Collard, L. La cinquième nage. Natation & théorie de l’évolution. Paris: Atlantica.
  • Collard, L., Gourmelin, E., & Schwob, V. (2013). The fifth stroke: the effect of learning the dolphin-kick technique on swimming speed in 22 novice swimmers. Journal of Swimming Research, 21(1).
  • Colobert, B., Bideau, B., Nicolas, G, Fusco, N. (2004). Théorie des corps allongés pour la nage avec palmes. In Pelayo (Ed), 3ème Journées Spécialisées de Natation (pp. 131-132). Lille : publibook.
  • Connaboy, C., Naemi, R., Brown, S., Psycharakis, S., McCabe, C., Coleman, S., & Sanders, R. (2015). The key kinematic determinants of undulatory underwater swimming at maximal velocity. Journal of Sports Sciences, 1-8.
  • Counsilman, J. E. (1986). Competitive swimming manuel. Indiana: Counsilman Co Inc.
  • Figueiredo, P., Toussaint, H. M., Vilas-Boas, J. P., & Fernandes, R. J. (2013). Relation between efficiency and energy cost with coordination in aquatic locomotion. European journal of applied physiology, 113(3), 651-659.
  • Fish, F.E. (1993). Power output and propulsive efficiency of swimming bottlenose dolphins. J. Exp. Biol., 185:179-193.
  • Fish, F.E. (1996). Transitions from drag-based to lift-based propulsion in mammalian swimming. Amer. Zool., 36: 628-641.
  • Gatta, G., Cortesi, M., & Di Michele, R. (2012). Power production of the lower limbs in flutter-kick swimming. Sports Biomechanics, 11(4), 480-491.
  • Gray, J. (1936). Studies on animal locomotion. VI. The propulsive powers of the dolphin. J. Exp Biol. Vol 13, 192-199.
  • Guillaume, J.L., Piat, E. (2003). Conception et modélisation d’un microrobot nageur. RS-JESA, vol 37, 1, 31-48.
  • Hertel, H. (1966). Structure, form, movement. New York: Reinhold.
  • Hillmeyer, S. R. (2015). The Effect of Different Styles of Underwater Kicking on Velocity in Swimming.
  • Holt, L.E. (1989). Swimming velocity with and without lift forces. Unpublished paper, Sports Sciences Laboratory, Canada: Dalhousie University.
  • Lighthill, M.J. (1960). Note on the swimming of slender fish. J. Fluid Mech., 9: 305-317.
  • Lighthill, M.J. (1969). Hydrodynamics of aquatic animal propulsiona survey. Ann. Rev. Fluid Mech., 1: 413-446.
  • Lighthill, M.J. (1975). Mathematical biofluiddynamics. Philadelphia: SIAM.
  • Lindsey, C.C. (1978). Form, function and locomotory habits in fish. In W.S. Hoar & D.J. Randall (Eds). Fish Physiology, vol VII. Locomotion (pp. 1-100), New York.
  • Maglischo, E.W. (1982). Swimming faster. Chico : Mayfield Publishing Compagny.
  • Martin, J. (2015). Go Fast With The Flow. Mechanical Engineering, 137(5), 40.
  • Mauss, M. (1936). Les techniques du corps. Journal de psychologie, 32(3-4), 365-86.
  • Müller, U.K., Van Den Heuvel B. L. E., Stamhuis, E.J., Videler J.J. (1997). Fish foot prints: morphology and energetics of the wake behind continuously swimming mullet. J. Exp Biol., 200: 2893-2906.
  • Parlebas, P. (1984). La dissipation sportive, Culture Technique, 13, 19-37.
  • Parlebas, P. (1999). Les tactiques du corps. In Approches de la culture matérielle. Corps à corps avec l’objet. Paris : L’Harmattan, pp. 29-43.
  • Pelayo, P., Sidney, M., Kherif, T., Chollet, D., & Tourny, C. (1996). Stroking Characteristics in Freestyle Swimming and Relationships With Anthropometric Characteristics. Journal of applied biomechanics, 12(2).
  • Perelli, A., Leoncini, D. A., Sandroni, G., Faggioni, O., Zunino, R., & Soldani, M. (2013). Design and performance analysis of the mechanical structure of a piezoelectric generator by Von Karman vortexes for underwater energy harvesting. In OCEANS-Bergen, 2013 MTS/IEEE (pp. 1-8). IEEE.
  • Sanders, R.H. (1997a). Extending the ‘Schleihauf’ model for estimating forces produced by a swimmer’s hand. In B.O. Eriksson & L. Gullstrand (Eds), Proceedings of the XII FINA World Congress on Sports Medicine (pp. 421-428). Goteborg, Sweden: Chalmers Reproservice.
  • Sanders, R.H. (1997b). Hydrodynamic characteristics of a swimmer’s hand with adducted thumb: implications for technique. In B.O. Eriksson & L. Gullstrand (Eds), Proceedings of the XII FINA World Congress on Sports Medicine (pp. 429-434). Goteborg, Sweden: Chalmers Reproservice.
  • Sanders, R.H. (1998). Lifting Performance in aquatic sports. Keynote address at the XVI International Symposium of Biomechanics in Sports, Konstanz, Germany, 21-25/07.
  • Schleihauf, R.E. (1978). Swimming propulsion: a hydrodynamic analysis, Fort Laudedale, Floride : American Swimming Coaches Association.
  • Schouveiler, L., Hover, F.S., Triantafyllou, M.S. (2005). Performance of flapping foil propulsion. J. Fluids Struct., 20: 949-959.
  • Sfakiotakis, M., Lane, D.M, Davies, B. (1999). Review of fish swimming modes for aquatic locomotion. IEEE, J. Oceanic Engineering, vol 24, 2, 237252.
  • Shubik, M. 1982, Game Theory in the Social Sciences, Massachusetts Institute of Technology, The MIT press.
  • Sidney, M. (1996). Tethered forces in crawl stroke and their relationship to antropometric characteristics and sprint swimming performance, Journal of human movement studies, 31.
  • Smith, L. (1978). Anthropometric measurements, and arm and leg speed performance of male and female swimmers as predictor of swim speed, Journal of sports medicine and physical fitness, 18.
  • Sprigings, E. J. & Koehler, J.A. (1990). The choice between Bernoulli’s or Newton’s model in predicting dynamic lift, International Journal of Sport Biomechanics, 6, 235-245.
  • Troup, J.P. (1992). International Center for Aquatic Research Annual: studies by the International Center for Aquatic Research 1991-92, Colorado Springs, CO: United States Swimming Press.
  • Vennell R., Pease D., Wilson, B. (2006). Wave drag on human swimmers. J Biomech. 39(4): 664-671.
  • Webb, P.W. (1975). Hydrodynamics and energetics of fish propulsion. Bull Fish Res Bd Can., 190: 149-158.
  • Wei, T., Mark, R., & Hutchison, S. (2014). The fluid dynamics of competitive swimming. Annual Review of Fluid Mechanics, 46, 547-565.
  • Von Loebbecke, A., Mittal, R., Fish, F., & Mark, R. (2009). Propulsive efficiency of the underwater dolphin kick in humans. Journal of biomechanical engineering, 131(5), 54504.
  • Williams, T.M., Frield, W.A., Fong, M.L., Yamada, R.M. (1992). Travel at low energetic cost by swimming and wave-riding bottlenose dolphins. Nature, 355: 821-823.
  • Wood, T.C. & Holt, L.E. (1979). A fluid dynamic analysis of the propulsive potential of the hand and forearm in swimming, in Swimming III, Baltimore, MD: University Park Press.
  • Zamparo, P., Bonifazi, M., Faina M., Milan A. (2005). Energy cost of swimming of elite long distance swimmers. Eur J Appl Physiol., 94(5-6): 697-704.