Plus vite en Minimax. Effet des coulées sur la vitesse en 100m 4 nages chez 67 nageurs non experts

  1. Luc Collard
  2. Corinne Fantoni
  3. Joseba Etxebeste Otegi
Journal:
Acciónmotriz

ISSN: 1989-2837

Year of publication: 2018

Issue: 21

Pages: 29-36

Type: Article

More publications in: Acciónmotriz

Abstract

The swim times of 67 swimmers were compared during the performance of two 100-meter individual medleys in a short course (25 meter) pool. The first medley was swum as fast as possible and in the absence of any particular stylistic constraints. For the second medley, the swimmers had to use their “minimax” – minimum strokes, maximum speed – according to a pre-established scheme. The athletes were thus encouraged to use underwater dolphin kicking, to the extent permitted by the sport’s rules. All the swimmers were convinced that they had swum more rapidly in the first (unconstrained) medley, whereas the 29 betters in the group more quickly by maximizing their immersions in the minimax trial.

Bibliographic References

  • Arellano, R., Pardillo, S., & Gavilán, A. (2002). Underwater undulatory swimming: Kinematic characteristics, vortex generation and application during the start, turn and swimming strokes. In Proceedings of the XXth International Symposium on Biomechanics in Sports, Universidad de Granada.
  • Atkison, R. R., Dickey, J. P., Dragunas, A., & Nolte, V. (2014). Importance of sagittal kick symmetry for underwater dolphin kick performance. Human movement science, 33, 298-311.
  • Averianova, A., Nikodelis, T., Konstantakos, V., & Kollias, I. (2016). Rotational kinematics of pelvis and upper trunk at butterfly stroke: Can fins affect the dynamics of the system?. Journal of Biomechanics.
  • Brown, R.M., Counsilman, J.E. (1971). The role of lift in propelling swimmers. In J.M. Cooper (Ed.), Biomechanics (pp. 179-188). Chicago: Athletic Institute.
  • Cappaert, J. & Rushall, B.S. (1994). Biomechanical analyses of champion swimmers, Spring Valley, CA: Sports Sciences Associates.
  • Chauvaud, F. (2007). Corps submergés, corps engloutis: une histoire des noyés et de la noyade de l’Antiquité à nos jours. Amherst Media, Inc.
  • Choi, T. (2015). Learning from the Dolphins: How Anterior Motion Affects the Dolphin Kick. Bulletin of the American Physical Society, 60.
  • Chollet, D. (2000). Natation sportive, approche scientifique. Paris: Vigot.
  • Collard, L., Auvray, E., & Bellaunay, I. (2008). Why have swimmers neglected the “fish kick” technique? International Journal of Performance Analysis in Sport, 8(3), 18-26.
  • Collard, L. La cinquième nage. Natation & théorie de l’évolution. Paris: Atlantica.
  • Collard, L., Gourmelin, E., & Schwob, V. (2013). The fifth stroke: the effect of learning the dolphin-kick technique on swimming speed in 22 novice swimmers. Journal of Swimming Research, 21(1).
  • Colobert, B., Bideau, B., Nicolas, G, Fusco, N. (2004). Théorie des corps allongés pour la nage avec palmes. In Pelayo (Ed), 3ème Journées Spécialisées de Natation (pp. 131-132). Lille : publibook.
  • Connaboy, C., Naemi, R., Brown, S., Psycharakis, S., McCabe, C., Coleman, S., & Sanders, R. (2015). The key kinematic determinants of undulatory underwater swimming at maximal velocity. Journal of Sports Sciences, 1-8.
  • Counsilman, J. E. (1986). Competitive swimming manuel. Indiana: Counsilman Co Inc.
  • Figueiredo, P., Toussaint, H. M., Vilas-Boas, J. P., & Fernandes, R. J. (2013). Relation between efficiency and energy cost with coordination in aquatic locomotion. European journal of applied physiology, 113(3), 651-659.
  • Fish, F.E. (1993). Power output and propulsive efficiency of swimming bottlenose dolphins. J. Exp. Biol., 185:179-193.
  • Fish, F.E. (1996). Transitions from drag-based to lift-based propulsion in mammalian swimming. Amer. Zool., 36: 628-641.
  • Gatta, G., Cortesi, M., & Di Michele, R. (2012). Power production of the lower limbs in flutter-kick swimming. Sports Biomechanics, 11(4), 480-491.
  • Gray, J. (1936). Studies on animal locomotion. VI. The propulsive powers of the dolphin. J. Exp Biol. Vol 13, 192-199.
  • Guillaume, J.L., Piat, E. (2003). Conception et modélisation d’un microrobot nageur. RS-JESA, vol 37, 1, 31-48.
  • Hertel, H. (1966). Structure, form, movement. New York: Reinhold.
  • Hillmeyer, S. R. (2015). The Effect of Different Styles of Underwater Kicking on Velocity in Swimming.
  • Holt, L.E. (1989). Swimming velocity with and without lift forces. Unpublished paper, Sports Sciences Laboratory, Canada: Dalhousie University.
  • Lighthill, M.J. (1960). Note on the swimming of slender fish. J. Fluid Mech., 9: 305-317.
  • Lighthill, M.J. (1969). Hydrodynamics of aquatic animal propulsiona survey. Ann. Rev. Fluid Mech., 1: 413-446.
  • Lighthill, M.J. (1975). Mathematical biofluiddynamics. Philadelphia: SIAM.
  • Lindsey, C.C. (1978). Form, function and locomotory habits in fish. In W.S. Hoar & D.J. Randall (Eds). Fish Physiology, vol VII. Locomotion (pp. 1-100), New York.
  • Maglischo, E.W. (1982). Swimming faster. Chico : Mayfield Publishing Compagny.
  • Martin, J. (2015). Go Fast With The Flow. Mechanical Engineering, 137(5), 40.
  • Mauss, M. (1936). Les techniques du corps. Journal de psychologie, 32(3-4), 365-86.
  • Müller, U.K., Van Den Heuvel B. L. E., Stamhuis, E.J., Videler J.J. (1997). Fish foot prints: morphology and energetics of the wake behind continuously swimming mullet. J. Exp Biol., 200: 2893-2906.
  • Parlebas, P. (1984). La dissipation sportive, Culture Technique, 13, 19-37.
  • Parlebas, P. (1999). Les tactiques du corps. In Approches de la culture matérielle. Corps à corps avec l’objet. Paris : L’Harmattan, pp. 29-43.
  • Pelayo, P., Sidney, M., Kherif, T., Chollet, D., & Tourny, C. (1996). Stroking Characteristics in Freestyle Swimming and Relationships With Anthropometric Characteristics. Journal of applied biomechanics, 12(2).
  • Perelli, A., Leoncini, D. A., Sandroni, G., Faggioni, O., Zunino, R., & Soldani, M. (2013). Design and performance analysis of the mechanical structure of a piezoelectric generator by Von Karman vortexes for underwater energy harvesting. In OCEANS-Bergen, 2013 MTS/IEEE (pp. 1-8). IEEE.
  • Sanders, R.H. (1997a). Extending the ‘Schleihauf’ model for estimating forces produced by a swimmer’s hand. In B.O. Eriksson & L. Gullstrand (Eds), Proceedings of the XII FINA World Congress on Sports Medicine (pp. 421-428). Goteborg, Sweden: Chalmers Reproservice.
  • Sanders, R.H. (1997b). Hydrodynamic characteristics of a swimmer’s hand with adducted thumb: implications for technique. In B.O. Eriksson & L. Gullstrand (Eds), Proceedings of the XII FINA World Congress on Sports Medicine (pp. 429-434). Goteborg, Sweden: Chalmers Reproservice.
  • Sanders, R.H. (1998). Lifting Performance in aquatic sports. Keynote address at the XVI International Symposium of Biomechanics in Sports, Konstanz, Germany, 21-25/07.
  • Schleihauf, R.E. (1978). Swimming propulsion: a hydrodynamic analysis, Fort Laudedale, Floride : American Swimming Coaches Association.
  • Schouveiler, L., Hover, F.S., Triantafyllou, M.S. (2005). Performance of flapping foil propulsion. J. Fluids Struct., 20: 949-959.
  • Sfakiotakis, M., Lane, D.M, Davies, B. (1999). Review of fish swimming modes for aquatic locomotion. IEEE, J. Oceanic Engineering, vol 24, 2, 237252.
  • Shubik, M. 1982, Game Theory in the Social Sciences, Massachusetts Institute of Technology, The MIT press.
  • Sidney, M. (1996). Tethered forces in crawl stroke and their relationship to antropometric characteristics and sprint swimming performance, Journal of human movement studies, 31.
  • Smith, L. (1978). Anthropometric measurements, and arm and leg speed performance of male and female swimmers as predictor of swim speed, Journal of sports medicine and physical fitness, 18.
  • Sprigings, E. J. & Koehler, J.A. (1990). The choice between Bernoulli’s or Newton’s model in predicting dynamic lift, International Journal of Sport Biomechanics, 6, 235-245.
  • Troup, J.P. (1992). International Center for Aquatic Research Annual: studies by the International Center for Aquatic Research 1991-92, Colorado Springs, CO: United States Swimming Press.
  • Vennell R., Pease D., Wilson, B. (2006). Wave drag on human swimmers. J Biomech. 39(4): 664-671.
  • Webb, P.W. (1975). Hydrodynamics and energetics of fish propulsion. Bull Fish Res Bd Can., 190: 149-158.
  • Wei, T., Mark, R., & Hutchison, S. (2014). The fluid dynamics of competitive swimming. Annual Review of Fluid Mechanics, 46, 547-565.
  • Von Loebbecke, A., Mittal, R., Fish, F., & Mark, R. (2009). Propulsive efficiency of the underwater dolphin kick in humans. Journal of biomechanical engineering, 131(5), 54504.
  • Williams, T.M., Frield, W.A., Fong, M.L., Yamada, R.M. (1992). Travel at low energetic cost by swimming and wave-riding bottlenose dolphins. Nature, 355: 821-823.
  • Wood, T.C. & Holt, L.E. (1979). A fluid dynamic analysis of the propulsive potential of the hand and forearm in swimming, in Swimming III, Baltimore, MD: University Park Press.
  • Zamparo, P., Bonifazi, M., Faina M., Milan A. (2005). Energy cost of swimming of elite long distance swimmers. Eur J Appl Physiol., 94(5-6): 697-704.