Fundamentos científicos de las estrategias de puesta a punto o taper antes de las competiciones

  1. Iñigo Mujika 1
  2. Sabino Padilla 1
  1. 1 Department of Research and Development, Medical Services, Athletic Club of Bilbao, Basque Country, España
Aldizkaria:
RED: Revista de entrenamiento deportivo = Journal of Sports Training

ISSN: 1133-0619

Argitalpen urtea: 2014

Liburukia: 28

Zenbakia: 3

Orrialdeak: 29-37

Mota: Artikulua

Beste argitalpen batzuk: RED: Revista de entrenamiento deportivo = Journal of Sports Training

Laburpena

The taper is a progressive nonlinear reduction of the training load during a variable period of time, in an attempt to reduce the physiological and psychological stress of daily training and optimize sports performance. The aim of the taper should be to minimize accumulated fatigue without compromising adaptations. This is best achieved by maintaining training intensity, reducing the training volume (up to 60-90%) and slightly reducing training frequency (no more than 20%). The optimal duration of the taper ranges between 4 and more than 28 d. Progressive nonlinear tapers are more beneficial to performance than step tapers. Performance usually improves by about 3% (usual range 0.5-6.0%), due to positive changes in the cardiorespiratory, metabolic, hematological, hormonal, neuromuscular, and psychological status of the athletes.

Erreferentzia bibliografikoak

  • 1. BONIFAZI, M., F. SARDELLA, and C. LUPPO (2000). Preparatory versus main competitions: differences in performances, lactate responses and pre-competition plasma cortisol concentrations in élite male swimmers. Eur. J. Appl. Physiol. 82:368-373
  • 2. Busso, T., K. HAKKINEN, A. PAKARINEN, H. KAUHANEN, P. V. KOMI, and J. R. LACOUR (1992). Hormonal adaptations and modelled responses in élite weightlifters during 6 weeks of training. Eur. J. Appl Physiol. 64:381-386
  • 3. CONVERTINO, V. A., C. KEIL, and J. E. GREENLEAF (1981). Plasma volume, osmolality, vasopressin, and renin activity during graded exercise in man. J. Appl. Physiol. 50:123-128
  • 4. DRESSENDORFER, R. H., S. R. PETERSEN, S. E. Jvloss EOVSHIN, and C. L. KEEN (2002). Mineral metabolism in male cyclists during high-intensity endurance training. Int. J. Sport Nutr. Exerc. Metab. 12:63-72
  • 5. FITZ-CLARKE, J. R., R. H. MORTON, and E. W. BANISTER (1991). Optimiz-ing athletic performance by influence curves. J. Appl. Physiol 71:1151-1158
  • 6. GRAVES, J. E., M. L. POLLOCK, S. H. LEGGETT, R. W. BRAITH, D. M. CARPENTER, and L. E. BISHOP (1988). Effect of reduced training frequency on muscular strength. Int. J. Sports Med. 9:316-319
  • 7. HICKSON, R. C, C. FOSTER, M. L. POLLOCK, T. M. GALASSI, and S. RICH (1985). Reduced training intensities and loss of aerobic power, endurance, and cardiac growth. J. Appl. Physiol. 58:492-499
  • 8. HICKSON, R. C, C. KANAKIS, Jr., J. R. DA vis, A. M. MOORE, and S. RICH (1982). Reduced training duration effects on aerobic power, endurance, and cardiac growth. J. Appl. Physiol. 53:225-229
  • 9. HICKSON, R. C, and M. A. ROSENKOETTER (1981). Reduced training frequencies and maintenance of increased aerobic power. Med. Sci. Sports Exerc. 13:13-16
  • 10. HOOPER, S. L., L. T. MACKINNON, and A. HOWARD (1999). Physiological and psychometric variables for monitoring recovery during taper-ing for major competition. Med. Sci. Sports Exerc. 31:1205-1210
  • 11. HOPKINS, W. G., J. A. HAWLEY, and L. BURKE (1999). Design and analysis of research on sport performance enhancement. Med. Sci. Sports Exerc. 31:472-485
  • 12. HOUMARD, J. A., D. L. COSTILL, J. B. MITCHELL, S. H. PARK, W. J. FINK, and J. M. BURNS (1990). Testosterone, cortisol, and creatine kinase levels in male distance runners during reduced training. Int. J. Sports Med. 11:41-45
  • 13. HOUMARD, J. A., D. L. COSTILL, J. B. MITCHELL, S. H. PARK, R. C. HICKNER, and J. N. ROEMMICH (1990). Reduced training maintains performance in distance runners. Int. J. Sports Med. 11:46-52
  • 14. HOUMARD, J. A., and R. A. JOHNS (1994). Effects of taper on swim performance. practical implications. Sports Med. 17:224-232
  • 15. HOUMARD, J. A., J. P. KIRWAN, M. G. FLYNN, and J. B. MITCHELL (1989). Effects of reduced training on submaximal and maximal running responses. Int. J. Sports Med. 10:30-33
  • 16. JOHNS, R. A., J. A. HOUMARD, R. W. KOBE, et al (1992). Effects of taper on swim power, stroke distance and performance. Med. Sci. Sports Exerc. 24:1141-1146
  • 17. KENITZER, R. F., Jr (1998). Optimal taper period in female swimmers. J. Swimming Res. 13:31-36
  • 18. KUBUKELI, Z. N., T. D. NOAKES, and S. C. DENNIS (2002). Training techniques to improve endurance exercise performances. Sports Med. 32:489-509
  • 19. MARTIN, D. T., J. C. SCIFRES, S. D. ZIMMERMAN, and J. G. WILKIN-SON (1994). Effects of interval training and a taper on cycling performance and isokinetic leg strength. Int. J. Sports Med. 15:485-491
  • 20. MCCONELL, G. K., D. L. COSTILL, J. J. WIDRICK, M. S. HICKNEY, H. TANAKA, and P. B. GASTIN (1993). Reduced training volume and intensity maintain aerobic capacity but not performance in distance runners. Int. J. Sports Med. 14:33-37
  • 21. MILLARD. M., C. ZAUNER, R. CADE, and R. REESE (1985). Serum CPK levels in male and female world class swimmers during a season of training. J. Swimming Res. 1:12-16
  • 22. MORTON, R. H., J. R. FITZ-CLARKE, and E. W. BANISTER (1990). Modeling human performance in running. J. Appl. Physiol. 69:1171-1177
  • 23. MUJIKA, I (1998). The influence of training characteristics and tapering on the adaptation in highly trained individuals: a review. Int. J. Sports Med. 19:439-446
  • 24. MUJIKA, I., T. BUSSO, A. GEYSSANT, F. BARALE, L. LACOSTE, and J. C. CHATARD (1996). Modeled responses to training and taper in com-petitive swimmers. Med. Sci. Sports Exerc. 28:251-258
  • 25. MUJIKA, I., J. C. CHATARD, T. BUSSO, A. GEYSSANT, F. BARALE, and L. LACOSTE (1995). Effects of training on performance in competitive swimming. Can. J. Appl. Physiol. 20:395-406
  • 26. MUJIKA, I., J. C. CHATARD, T. BUSSO, A. GEYSSANT, F. BARALE, L. LACOSTE (1996). Use of swim-training profiles and performance data to enhance training effectiveness. J. Swimming Res. 11:23-29
  • 27. MUJIKA, I., J. C. CHATARD, and A. GEYSSANT (1996). Effects of training and taper on blood leucocyte populations in competitive swim-mers: relationships with cortisol and performance. Int. J. Sports Med. 17:213-217
  • 28. MUJIKA, I., J. C. CHATARD, S. PADILLA, C. Y. GUEZENNEC, and A. GEYSSANT (1996). Hormonal responses to training and its tapering off in competitive swimmers: relationships with performance. Eur. J. Appl. Physiol. 74:361-366
  • 29. MUJIKA, I., A. GOYA, S. PADILLA, A. GRIJALBA, E. GOROSTIAGA, and J. IBAјEZ (2000). Physiological responses to a 6-day taper in middle-distance runners: influence of training intensity and volume. Med. Sci. Sports Exerc. 32:511-517
  • 30. MUJIKA, I., A. GOYA, E. RUIZ, A. GRIJALBA, J. SANTISTEBAN, and S. PADILLA (2002). Physiological and performance responses to a 6-day taper in middle-distance runners: influence of training frequency. Int. J. Sports Med. 23:367-373
  • 31. MUJIKA, I., and S. PADILLA (2000). Detraining loss of training-induced physiological and performance adaptations. Part I. Short-term insufficient training stimulus. Sports Med. 30:79-87
  • 32. MUJIKA, I., S. PADILLA, A. GEYSSANT, J. C. CHATARD (1997). Hematological responses to training and taper in competitive swimmers: relationships with performance. Arch. Physiol. Biochem. 105:379-385
  • 33. MUJIKA, I., S. PADILLA, and D. PYNE (2002). Swimming performance changes during the final 3 weeks of training leading to the Sydney 2000 Olympic Games. Int. J. Sports Med. 23:582-587
  • 34. NEARY, J. P., T. P. MARTIN, D. C. REID, R. BURNHAM, and H. A. QUINNEY (1992). The effects of a reduced exercise duration taper programme on performance and muscle enzymes of endurance cyclists. Eur. J. Appl. Physiol. 65:30-36
  • 35. NEUFER, P. D (1989). The effect of detraining and reduced training on the physiological adaptations to aerobic exercise training. Sports Med. 8:302-321
  • 36. NEUFER, P. D., D. L. COSTILL, R. A. FIELDING, M. G. FLYNN, and J. P. KIRWAN (1987). Effect of reduced training on muscular strength and endurance in competitive swimmers. Med. Sci. Sports Exerc. 19: 486-490
  • 37. RAGLIN, J. S., D. M. KOCEJA, J. M. STAGER, and C. A. HARMS (1996). Mood, neuromuscular function, and performance during training in female swimmers. Med. Sci. Sports Exerc. 28:372-377
  • 38. RIETJENS, G. J. W. M., H. A. KEIZER, H. KUIPERS, and W. H. M. SARIS (2001). A reduction in training volume and intensity for 21 days does not impair performance in cyclists. Br. J. Sports Med. 35: 431-434
  • 39. SELBY, G. B., and E. R. EICHNER (1986). Endurance swimming, intravas-cular hemolysis, anemia, and iron depletion. Am. J. Med. 81:791-794
  • 40. SHEPLEY, B., J. D. MACDOUGALL, N. CIPRIANO, J. R. SUTTON, M. A. TARNOPOLSKY, and G. COATES (1992). Physiological effects of tapering in highly trained athletes. J. Appl. Physiol. 72:706-711
  • 41. TAYLOR, S. R., G. G. ROGERS, and H. S. DRIVER (1997). Effects of training volume on sleep, psychological, and selected physiological pro-files of elite female swimmers. Med. Sci. Sports Exerc. 29:688-693
  • 42. TRAPPE, S., D. COSTILL, and R. THOMAS (2001). Effect of swim taper on whole muscle and single fiber contractile properties. Med. Sci. Sports Exerc. 32:48-56
  • 43. WENGER, H. A., and G. J. BELL (1986). The interactions of intensity, frequency and duration of exercise training in altering cardiore-spiratory fitness. Sports Med. 3:346-356
  • 44. WITTING, A. F., J. A. HOUMARD, and D. L. COSTILL (1989). Psychological effects during reduced training in distance runners. Int. J. Sports Med. 10:97-100
  • 45. YAMAMOTO, Y., Y. MUTOH, and M. MIYASHITA (1988). Hematological and biochemical indices during the tapering period of competitive swimmers. In: Swimming Science V, B. E. Ungerechts, K. Wilke, and K. Reischle (Eds.). Champaign, IL: Human Kinetics, pp. 269-275
  • 46. ZARKADAS, P. C., J. B. CARTER, and E. W. BANISTER (1995). Modelling the effect of taper on performance, maximal oxygen uptake, and the anaerobic threshold in endurance triathletes. Adv. Exp. Med. Biol. 393:179-186