Sistemas Integrados de Potencia en Buques Offshore: Control, tendencias y retos

  1. Juan José Valera-García 1
  2. Iñigo Atutxa-Lekue 1
  1. 1 Ingeteam Power Technology
Aldizkaria:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Argitalpen urtea: 2016

Alea: 13

Zenbakia: 1

Orrialdeak: 3-14

Mota: Artikulua

DOI: 10.1016/J.RIAI.2015.12.002 DIALNET GOOGLE SCHOLAR lock_openSarbide irekia editor

Beste argitalpen batzuk: Revista iberoamericana de automática e informática industrial ( RIAI )

Laburpena

The offshore vessels require a high precision speed control and dynamic positioning. Adverse weather conditions and/or rough waves give rise to high disturbances that must be rejected by the control system to keep the vessel position in the area or station where the vessel operation is being executed. Other requirements related to the safety, reliability and robustness must be obviously ensured. Since more than a decade the power system of this kind of vessels is based on a diesel-electric power plant where the propellers and thruster units are controlled by electrical drives. In this power system the required electrical energy/power is generated through diesel gensets, and distributed to the propulsion drives (and to the rest of vessel utility loads) through a power grid. In this work the most commonly used integrated power system architecture is first introduced thus identifying the control functions and their interdependencies. Some trends and new power system topologies to improve the energy efficiency are then also presented and described. The emergence of new solutions based on DC grids allows the diesel gensets to operate at variable speed and makes the integration of the energy storage systems or even some renewable energy systems easier. However, they present some technical and design challenges in order to ensure a stable and robust solution by design. One of them is related to the stability analysis of the DC grid when multiple nonlinear constant power loads (negative impedance) are connected and thus interacting on the same DC bus.

Erreferentzia bibliografikoak

  • Abeysekara, S., 2012. Effectiveness and shortcomings of proposed IMO CHG Emission control measures. MSc thesis in Maritime Operations and Management, School of Engineering and Mathematical Sciences, City University London
  • Adnanes, A. K., 2003. Maritime electrical installations and diesel electric propulsion. ABB AS, Tech. Rep.
  • Boldea, I., 2006. Synchronous generators (The electrical generators handbook). CRC press. Boca Raton.
  • Breivik, M., 2010. Topics in guided motion control of marine vehicles. Ph.D. dissertation, Dept. Eng. Cybern., Norwegian Univ. Sci. Technol.
  • Cairoli, P., Kondratiev, I., Dougal, R. A., 2013. Coordinated control of the bus tie switches and power supply converters for fault protection in dc microgrids. IEEE Trans. Power Electronics, Vol. 28, No. 4, pp. 2037- 2047. DOI:10.1109/TPEL.2012.2214790
  • De Brabandere, K., Vanthournout, K., Driesen, J., Deconinck, G., Belmans, R., 2007. Control of microgrids. In Proc. IEEE Power Eng. Soc. General Meet., 2007, pp. 1–7. DOI:10.1109/PES.2007.386042
  • DNV-GL (Ed.), 2015. In focus – The future is hybrid – A guide to use of batteries is shipping. DNV GL Maritime publications
  • Doerry, N., 2007. Next Generation Integrated Power Systems, NGIPS Master Plan, Whashington, DC: Naval Sea Systems Command, 2007.
  • Emadi, A., Khaligh, A., Rivetta, C. H., Williamson, G. A., 2006. Constant power loads and negative impedance instability in automotive systems: Definition, modeling, stability, and control of power electronic converters and motor drives. IEEE Trans. Veh. Technol., vol. 55, no. 4, pp. 1112– 1125. DOI:10.1109/TVT.2006.877483
  • Emadi, A., Ehsani, A., 2001. Dynamics and control of multi-converter DC power electronic systems. In Power Electronics Specialists Conference, 2001. PESC. 2001 IEEE 32nd Annual, vol.1, pp.248-253. DOI:10.1109/PESC.2001.954028
  • Gilbert, P., Bows-Larkin, A. Mander, S., Walsh, C., 2014. Technologies for the high seas: meeting the climate challenge, Carbon Management, 5:4, 447-461, DOI: 10.1080/17583004.2015.1013676
  • Guerrero, J. M., Vásquez, J. V., Teodorescu, R., 2009. Hierarchical Control of Droop-Controlled DC and AC Microgrids - A General Approach Towards Standardization. In Proceedings of the 35th Annual Conference of the IEEE Industrial Electronics Society. pp. 4341-4346. DOI:10.1109/TIE.2010.2066534
  • Giddings, I. C., 2013. IMO Guidelines for vessels with dynamic positioning systems. In Proceedings of the Dynamic Positioning Conference, October 15-16, Houston.
  • Hansen, J. F., Lindtjørn, J. O., K. Vanska, K., 2011a. Onboard DC grid for enhanced DP operation in ships. In MTS Dynamic Positioning Conference, Houston, 2011.
  • Hansen, J. F., Lindtjorn, J. O., Odegaard, U. U., Myklebust, T. A., 2011b. Increased operational performance of OSVs by onboard dc Grid. In Proc. of 4th Int. Conf. Technol. Oper. Offshore Support Vessels
  • Hassani, V., Sørensen, A. J., Pascoal, A. M., 2012. Robust dynamic positioning of offshore vessels using mixed-u synthesis, part I: Designing process. In Proc. ACOOG 2012-IFAC Workshop on Automatic Control in Offshore Oil and Gas Production, Trondheim, Norway.
  • He, J., Li, Y.W., Guerrero, J.M., Blaabjerg, F., Vasquez, J.C., 2013. An islanding microgrid power sharing approach using enhanced virtual impedance control scheme. IEEE Trans. Power Electron., vol.28, no.11, pp. 5272-5282. DOI: 10.1109/TPEL.2013.2243757
  • Hiti, S., Boroyevich, D., 1996. Small-signal modeling of three phase PWM modulators. In Power Electronics Specialists Conf., vol. 1, pp. 550–555. DOI:10.1109/PESC.1996.548634
  • Holtz, J, Quan, H., 2002. Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification. IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1087–1095. DOI:10.1109/TIA.2002.800779
  • IEEE Std., 2010. IEEE Recommended Practice for 1 kV to 35 kV MediumVoltage DC Power Systems on Ships. IEEE Std 1709-2010, pp.1-54
  • Joseph, A., Shahidehpour, M., 2006. Battery storage systems in electric power systems. In Proc. IEEE Power Energy Soc. Gen. Meet. DOI:10.1109/PES.2006.1709235
  • Liu, X., N. Fournier, N., A. J. Forsyth, A. J., 2008. Active stabilization of a HVDC distribution system with multiple constant power loads. In Proc. IEEE Vehicle Power Propulsion Conf., pp. 1–6. DOI:10.1109/VPPC.2008.4677567
  • Luo, S., Ye, Z., R.-L. Lin, R. L., Lee, F. C., 1999. A classification and evaluation of paralleling methods for power supply modules. In Proc. 30th Annu. IEEE Power Electron. Spec. Conf., pp. 901–908. DOI:10.1109/PESC.1999.785618
  • Meyer, J. M., Rufer, A., 2006. A dc hybrid circuit breaker with ultra-fast contact opening and integrated gate-commutated thyristors (igcts). IEEE Trans. Power Del., vol. 21, no. 2, pp. 646–651. DOI:10.1109/TPWRD.2006.870981
  • Opdahl, A. 2013. Fuel Savings Obtained by Replacing Traditional ACdistribution Systems onboard Vessels with DC-distribution Systems. MSc. Thesis. Dept. of Electric Power Eng., Norwegian Univ. Sci. Technol.
  • Park, H., Sun, J., Pekarek, S., Stone, P., Opila, D. F., Meyer, R., Kolmanovsky, I., DeCarlo, R., 2015. Real-Time Model Predictive Control for Shipboard Power Management Using the IPA-SQP Approach, IEEE Transactions on Control Systems Technology, Preprint, Vol. 23(6), pp. 2129 - 2143. DOI:10.1109/TCST.2015.2402233
  • Riccobono, A., Santi, E., 2012. A novel Passivity-Based Stability Criterion (PBSC) for switching converter DC distribution systems. In Applied Power Electronics Conference and Exposition (APEC), Twenty-Seventh Annual IEEE, vol., no., pp.2560-2567. DOI:10.1109/APEC.2012.6166184
  • Riccobono, A., Santi, E., 2014. Comprehensive Review of Stability Criteria for DC Power Distribution Systems. IEEE Transactions on Ind. Appl., vol.50, no.5, pp.3525-3535. DOI:10.1109/TIA.2014.2309800
  • Rodríguez, J., Dixon, J., Espinoza, J., Pontt, J., Lezana, P., 2005. PWM regenerative rectifiers: State of the art. IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 5–22. DOI:10.1109/TIE.2004.841149
  • Smogeli, Ø., Trong, N. D., Børhaug, B., Pivano, L., 2013. The next level dp capability analysis. In Proceedings of the Dynamic Positioning Conference, Marine Technology Society.
  • Sørensen, A. J., 2012. Marine Control Systems: Propulsion and Motion Control of Ships and Ocean Structures.Department of Marine Technology, NTNU, Norway.
  • Sørensen, A. J., Sagatun, S. I., and Fossen, T. I., 1996. Design of a dynamic positioning system using model-based control. Control Engineering Practice, 4(3), 359 - 368. DOI: 10.1016/0967-0661(96)00013-5.
  • Sørensen, A. J., 2011. A survey of dynamic positioning control systems. Annual Reviews in Control, 35 (2011) 123–136. DOI: 10.1016/j.arcontrol.2011.03.008
  • Sørfonn, I., 2007. Power Management Control of Electrical Propulsion Systems. In MTS Dynamic Positioning Conference, 2007
  • Sudhoff, S. D., Glover, S. F., Zak, S. H., Pekarek, S. D., Zivi, E. J., Delisle, D. E., 2003. Stability Analysis Methodologies for DC Power Distribution Systems,” 13th International Ship Control Systems Symposium.
  • Vas, P., 1990. Vector Control of AC Machines. Claredon Press. Oxford.
  • Vas, P., 1998. Sensorless Vector and Direct Torque Control. Oxford University Press. Oxford.
  • Wu, M., Dah-Chuan, D., 2014. Active stabilization methods of electric power systems with constant power loads: a review. Journal of Modern Power Systems and Clean Energy, 2:66. DOI: 10.1007/s40565-014-0066-y
  • Zhang, X., Spencer, J. W., Guerrero, J. M., 2013. Small-signal modeling of digitally controlled grid-connected inverters with LCL filters. IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3752–3765. DOI:10.1109/TIE.2012.2204713
  • Zhong, Q. C., Weiss, G., 2011. Synchronverters: Inverters that mimic synchronous generators. IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1259–1267. DOI:10.1109/TIE.2010.2048839