Dificultades de aprendizaje del modelo de sonidouna revisión de la literatura

  1. Aritz Ruiz González 1
  2. Oier Azula 2
  3. Jenaro Guisasola Aranzábal 1
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

  2. 2 IES Plaiaundi BHI (Irun, País Basc)
Revista:
Enseñanza de las ciencias: revista de investigación y experiencias didácticas

ISSN: 0212-4521 2174-6486

Año de publicación: 2021

Volumen: 39

Número: 2

Páginas: 5-23

Tipo: Artículo

DOI: 10.5565/REV/ENSCIENCIAS.3217 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Enseñanza de las ciencias: revista de investigación y experiencias didácticas

Resumen

El aprendizaje del modelo científico del sonido (MCS) está presente en el currículum de ciencias de todos los niveles educativos y es un componente crítico de la alfabetización científica. Este trabajo presenta una revisión sistemática sobre la comprensión de los estudiantes del MCS en torno a tres ideas claves que emergen del análisis epistemológico: naturaleza del sonido y sus propiedades, propagación del sonido y modelo de onda. Cabe destacar que, independientemente de la etapa educativa, existe una dificultad en relacionar las propiedades intrínsecas del sonido con las magnitudes de onda y la persistencia de concepciones que atribuyen propiedades materiales al sonido. Además, no existe una clara progresión del aprendizaje sobre el MCS desde la Educación Primaria hasta los primeros años de Universidad. Finalmente, se discuten las implicaciones para la enseñanza-aprendizaje del MCS.

Referencias bibliográficas

  • Awad, N. y Barak, M. (2018). Pre-service science teachers learn a science, technology, engineering and mathematics (STEM)-oriented program: the case of sound, waves and communication systems. Eurasia Journal of Mathematics, Science and Technology Education, 14(4), 1431-1451. https://doi.org/10.29333/ejmste/83680
  • Barman, C. R., Barman, N. S. y Miller, J. A. (1996). Two teaching methods and students’ understanding of sound. School Science and Mathematics, 96(2), 63-67. https://doi.org/10.1111/j.1949-8594.1996.tb15812.x
  • Bolat, M. y Sözen, M. (2009). Knowledge levels of prospective science and physics teachers on basic concepts on sound (sample for Samsun city). Procedia-Social and Behavioral Sciences, 1(1), 1231-1238. https://doi.org/10.1016/j.sbspro.2009.01.220
  • Boyes, E. y Stanisstreet, M. (1991). Development of pupils’ ideas about seeing and hearing‐‐the path of light and sound. Research in Science and Technological Education, 9(2), 223-244. https://doi.org/10.1080/0263514910090209
  • Caleon, I. y Subramaniam, R. (2010). Development and application of a three‐tier diagnostic test to assess secondary students’ understanding of waves. International Journal of Science Education, 32(7), 939-961. https://doi.org/10.1080/09500690902890130
  • Çalik, M., Okur, M. y Taylor, N. (2011). A comparison of different conceptual change pedagogies employed within the topic of «sound propagation». Journal of Science education and Technology, 20(6), 729-742. https://doi.org/10.1007/s10956-010-9266-z
  • Chang, H. P., et al. (2007). Investigating primary and secondary students’ learning of physics concepts in Taiwan. International Journal of Science Education, 29(4), 465-482. https://doi.org/10.1080/09500690601073210
  • Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. Journal of the Learning Sciences, 14(2), 161-199. https://doi.org/10.1207/s15327809jls1402_1
  • Cromer, A. H. (1981). Física para las ciencias de la vida (2.a ed.). Reverte.
  • Duit, R., Gropengießer, H. y Kattmann, U. (2005). Towards science education research that is relevant for improving practice: The model of educational reconstruction. En H. E. Fischer (Ed.), Developing standards in research on science education (pp. 1-9). Taylor and Francis.
  • Duit, R., Gropengießer, H., Kattmann, U., Komorek, M. y Parchmann, I. (2012). The model of educational reconstruction – a framework for improving teaching and learning science. En D. Jorde y J. Dillon (Eds.), Science Education Research and Practice in Europe: Retrospective and Prospective (pp. 13-37). Springer. https://doi.org/10.1007/978-94-6091-900-8_2
  • Duncan, R. G. y Hmelo-Silver, C. E. (2009). Learning progressions: Aligning curriculum, instruction, and assessment. Journal of Research in Science Teaching, 46(6), 606-609. https://doi.org/10.1002/tea.20316
  • Duschl, R., Maeng, S. y Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47(2), 123-182. https://doi.org/10.1080/03057267.2011.604476
  • Eshach, H. (2014). Development of a student-centered instrument to assess middle school students’ conceptual understanding of sound. Physical Review Special Topics - Physics Education Research, 10(1), 010102. https://doi.org/10.1103/PhysRevSTPER.10.010102
  • Eshach, H., Lin, T. C. y Tsai, C. C. (2016). Taiwanese Middle School Students’ Materialistic Concepts of Sound. Physical Review Physics Education Research, 12(1). https://doi.org/10.1103/PhysRevPhysEducRes.12.010119
  • Eshach, H., Lin, T. C. y Tsai, C. C. (2018). Misconception of sound and conceptual change: A cross-sectional study on students’ materialistic thinking of sound. Journal of Research in Science Teaching, 55(5), 664-684. https://doi.org/10.1002/tea.21435
  • Eshach, H. y Schwartz, J. L. (2006). Sound Stuff? Naïve materialism in middle‐school students’ conceptions of sound. International Journal of Science Education, 28(7), 733-764. https://doi.org/10.1080/09500690500277938
  • Fazio, C., Guastella, I., Sperandeo‐Mineo, R. M. y Tarantino, G. (2008). Modeling Mechanical Wave Propagation: Guidelines and experimentation of a teaching-learning sequence. International Journal of Science Education, 30(11), 1491-1530. https://doi.org/10.1080/09500690802234017
  • Gotwals, A. W. y Anderson, C. W. (2015). Learning Progressions. En R. Gunstone (Ed.), Encyclopedia of Science Education (pp. 596-601). Dordrecht: Springer.
  • Grayson, D. J. y Donnelly, D. (1996). Using Education research to develop waves courseware. Computers in Physics, 10(30). https://doi.org/10.1063/1.4822353
  • Guisasola, J., Zuza, K., Ametller, J. y Gutiérrez-Berraondo, J. (2017). Evaluating and redesigning teaching learning sequences at the introductory physics level. Physical Review Physics Education Research, 13(2), 020139. https://doi.org/10.1103/PhysRevPhysEducRes.13.020139
  • Hadenfeldt, J. C., Liu, X. y Neumann, K. (2014). Framing students’ progression in understanding matter: A review of previous research. Studies in Science Education, 50(2), 181-208. https://doi.org/10.1080/03057267.2014.945829
  • Hernández, M, Couso, D. y Pintó, R. (2011). Teaching acoustic properties of materials in secondary school: Testing sound insulators. Physics Education, 46(5), 559. https://doi.org/10.1088/0031-9120/46/5/008
  • Hernández, M., Couso, D. y Pintó, R. (2012). The analysis of students’ conceptions as a support for designing a teaching/learning sequence on the acoustic properties of materials. Journal of Science Education and Technology, 21(6), 702-712. https://doi.org/www.jstor.org/stable/41674498.
  • Hernández, M., Couso, D. y Pintó, R. (2015). Analyzing students’ learning progressions throughout a teaching sequence on acoustic properties of materials with a model-based inquiry approach. Journal of Science Education and Technology, 24(2-3), 356-377. https://doi.org/10.1007/s10956-014-9503-y
  • Houle, M. E. y Barnett, G. M. (2008). Students’ conceptions of sound waves resulting from the enactment of a new technology-enhanced inquiry-based curriculum on urban bird communication. Journal of Science Education and Technology, 17(3), 242-251. https://doi.org/10.1007/s10956-008-9094-6
  • Hrepic, Z., Zollman, D. A. y Rebello, N. S. (2010). Identifying students’ mental models of sound propagation: The role of conceptual blending in understanding conceptual change. Physical Review Special Topics - Physics Education Research, 6(2), 020114. https://doi.org/10.1103/PhysRevSTPER.6.020114
  • Kennedy, E. M. y de Bruyn, J. R. (2011). Understanding of mechanical waves among second-year physics majors. Canadian Journal of Physics, 89(11), 1155-1161. https://doi.org/10.1139/p11-113
  • Knight, R. D. (2013). Physics for scientists and engineers: a strategic approach with modern physics. Pearson Higher Ed.
  • Küçüközer, A. (2009). Prospective science teachers’ understanding of sound. Procedia-Social and Behavioral Sciences, 1(1), 1889-1894. https://doi.org/10.1016/j.sbspro.2009.01.332
  • Lautrey, J. y Mazens, K. (2004). Is children’s naive knowledge consistent? A comparison of the concepts of sound and heat. Learning and Instruction, 14(4), 399-423. https://doi.org/10.1016/j.learninstruc.2004.06.011
  • Leccia, S. et al. (2015). Teaching about mechanical waves and sound with a tuning fork and the Sun. Physics Education, 50(6), 677. https://doi.org/10.1088/0031-9120/50/6/677
  • Linder, C. J. (1992). Understanding sound: So what is the problem? Physics Education, 27(5), 258. https://doi.org/10.1088/0031-9120/27/5/004
  • Linder, C. J. (1993). University physics students’ conceptualizations of factors affecting the speed of sound propagation. International Journal of Science Education, 15(6), 655-662. https://doi.org/10.1080/0950069930150603
  • Linder, C. J. y Erickson, G. L. (1989). A study of tertiary physics students’ conceptualizations of sound. International Journal of Science Education, 11(5), 491-501. https://doi.org/10.1080/0950069890110502
  • Macho, E. y Elejalde, M. (2017). ¿Por qué, a veces, no entiendo? Alambique: Didáctica de las Ciencias Experimentales, 89, 62-67.
  • Mazens, K. y Lautrey, J. (2003). Conceptual change in physics: children’s naive representations of sound. Cognitive Development, 18(2), 159-176. https://doi.org/10.1016/S0885-2014(03)00018-2
  • Merino, J. M. (1998a). Complexity of pitch and timbre concepts. Physics Education, 33, 105. https://doi.org/10.1088/0031-9120/33/2/015
  • Merino, J. M. (1998b). Some difficulties in teaching the properties of sounds. Physics Education, 33(2), 101-104. https://doi.org/10.1088/0031-9120/33/2/014
  • National Research Council (2007). Taking Science to School: Learning and Teaching Science in Grades K-8. Washington DC: The National Academies Press.
  • National Research Council (2013). Adapting to a Changing World: Challenges and Opportunities in Undergraduate Physics Education. Washington DC: The National Academies Press. https://doi.org/10.17226/18312
  • Okur, M. y Artun, H. (2016). Secondary students’ opinions about sound propagation. European Journal of Education Studies, 2(2), 44-62. https://oapub.org/edu/index.php/ejes/article/view/191
  • Perales, F. J. (1997). Escuchando el sonido: Concepciones sobre acústica en alumnos de distintos niveles educativos. Enseñanza de las Ciencias, 15(2), 233-248.
  • Podolefsky, N. S. y Finkelstein, N. D. (2007). Analogical scaffolding and the learning of abstract ideas in physics: Empirical studies. Physics Education Research, 3, 020104-1-16. https://doi.org/10.1103/PhysRevSTPER.3.020104
  • Real Decreto-ley 126/2014, de 28 de febrero, por el que se establece el currículo básico de la Educación Primaria.
  • Real Decreto-ley 1105/2014, de 26 de diciembre, por el que se establece el currículo básico de la Educación Secundaria Obligatoria y del Bachillerato.
  • Rossing, T. D., Moore, R. F. y Wheeler, P. (2001). The Science of Sound (3.ª ed.). San Francisco: Addison-Wesley.
  • Saura, O. y de Pro, A. (1999). ¿Utilizan los alumnos esquemas conceptuales en la interpretación del sonido? Enseñanza de las Ciencias, 17(2), 193-210.
  • Sözen, M. y Bolat, M. (2011). Determining the misconceptions of primary school students related to sound transmission through drawing. Procedia-Social and Behavioral Sciences, 15, 1060-1066. https://doi.org/10.1016/j.sbspro.2011.03.239
  • Sözen, M. y Bolat, M. (2016). Developing an achievement test for the subject of sound in science education. Journal of Education and Learning, 5(2), 149. https://doi.org/10.5539/jel.v5n2p149
  • Taber, K. S. (2015). Alternative Conceptions/Frameworks/Misconceptions. En R. Gunstone (Ed.), Encyclopedia of Science Education (pp. 37-41). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-2150-0_88
  • Tiberghien, A. (1996). Construction of prototypical situations in teaching the concept of energy. En G. Welford, J. Osborne y P. Scott (Eds.), Research in science education in Europe. Current issues and themes (pp. 100-114). Palmer Press.
  • Tipler, P. A. y Mosca, G. (2004). Física para la ciencia y la tecnología. I. Reverte.
  • Tongchai, A., Sharma, M. D., Johnston, I. D., Arayathanitkul, K. y Soankwan, C. (2009). Developing, evaluating and demonstrating the use of a conceptual survey in mechanical waves. International Journal of Science Education, 31(18), 2437-2457. https://doi.org/10.1080/09500690802389605
  • Tongchai, A. et al. (2011). Consistency of students’ conceptions of wave propagation: findings from a conceptual survey in mechanical waves. Physical Review Special Topics-Physics Education Research, 7(2), 020101. https://doi.org/10.1103/PhysRevSTPER.7.020101
  • Treagust, D. F., Jacobowitz, R., Gallagher, J. L. y Parker, J. (2001). Using assessment as a guide in teaching for understanding: A case study of a middle school science class learning about sound. Science Education, 85(2), 137-157. https://doi.org/10.1002/1098-237X(200103)85:2<137::AID-SCE30>3.0.CO;2-B
  • Vallejo, C. A. C., Araque, F. Y. V. y Uribe, A. M. (2017). Actividades didácticas para el tono como cualidad del sonido, en cursos de física del nivel básico, mediadas por la tecnología digital. Enseñanza de las Ciencias, 35(3), 129-150. https://doi.org/10.5565/rev/ensciencias.2091
  • Viennot, L. (2004). Common reasoning about sound. En Reasoning in Physics (pp. 141-151). Dordrecht: Springer. https://doi.org/10.1007/0-306-47636-3_9
  • Volfson, A., Eshach, H. y Ben-Abu, Y. (2018). Development of a diagnostic tool aimed at pinpointing undergraduate students’ knowledge about sound and its implementation in simple acoustic apparatuses’ analysis. Physical Review Physics Education Research, 14(2), 020127. https://doi.org/10.1103/PhysRevPhysEducRes.14.020127
  • von Aufschnaiter, C. y Rogge, C. (2015). Conceptual change in learning. En R. Gunstone (Ed.), Encyclopedia of Science Education (pp. 209-218). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-2150-0_99
  • West, E. y Wallin, A. (2013). Students’ learning of a generalized theory of sound transmission from a teaching-learning sequence about sound, hearing and health. International Journal of Science Education, 35(6), 980-1011. https://doi.org/10.1080/09500693.2011.589479
  • Wittmann, M. C. (2002). The object coordination class applied to wave pulses: Analysing student reasoning in wave physics. International Journal of Science Education, 24(1), 97-118. https://doi.org/10.1080/09500690110066944
  • Wittmann, M. C., Steinberg, R. y Redish, E. (1999). Making sense of how students make sense of mechanical waves. The Physics Teacher, 37(1), 15-21.
  • Wittmann, M. C., Steinberg, R. y Redish, F. R. (2003). Understanding and affecting student reasoning about sound waves. International Journal of Science Education, 25(8), 991-1013. https://doi.org/10.1080/09500690305024
  • Yalçin, S. A., Yalçin, P., Akar, M. S. y Sağirli, M. Ö. (2017). The effect of teaching practices with real life content in light and sound learning areas. Universal Journal of Educational Research, 5(9), 1621-1631. https://doi.org/10.13189/ujer.2017.050920