Monitorización de deformaciones y temperaturas en la estructura de un túnel artificial de alta velocidad mediante sensores ópticos puntuales, de longitud y distribuidos

  1. Torres, B. 1
  2. Payá-Zaforteza, I. 1
  3. Barrera, D. 1
  4. Alvarado, Y. A. 2
  5. Calderón, P. A. 1
  6. Loayssa, A. 3
  7. Sagüés, M. 3
  8. Zornoza, A. 3
  9. Sales, S. 1
  1. 1 Universidad Politécnica de Valencia
    info

    Universidad Politécnica de Valencia

    Valencia, España

    ROR https://ror.org/01460j859

  2. 2 Pontífica Universidad Javeriana
    info

    Pontífica Universidad Javeriana

    Bogotá, Colombia

    ROR https://ror.org/03etyjw28

  3. 3 Universidad Pública de Navarra
    info

    Universidad Pública de Navarra

    Pamplona, España

    ROR https://ror.org/02z0cah89

Journal:
Informes de la construcción

ISSN: 0020-0883

Year of publication: 2015

Volume: 67

Issue: 538

Type: Article

DOI: 10.3989/IC.13.081 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Informes de la construcción

Abstract

Structural Health Monitoring (SHM) is presently having a great development. Strains and temperatures are usually the key parameters to be monitored due to their relevance when explaining structural behavior. Several types of sensors are used in SHM, but fiber optic sensors are especially interesting due to their advantages with respect to conventional sensors. In this paper, the monitoring of a high-speed train tunnel recently built in Spain using three types of fiber optic sensors developed by the authors is shown. Results given by the sensors are compared to those provided by a theoretical model built using FEM. Comparison of measurements and theoretical results confirms that the sensors reproduced remarkably well the general patterns of the tunnel structural behavior, even when strains are relatively small (around 5 με). Finally, the paper discusses the behavior of the sensors, their measurements and their field of application which is useful for researchers and practitioners.

Bibliographic References

  • (1) Glisic, B., Inaudi, D. (2007). Fibre Optics Methods for Structural Health Monitoring. Chichester: John Wiley & Sons Ltd.
  • (2) Rodrigues, C., Inaudi, D. (2010). Laboratory and field comparison of long-gauge strain sensing technologies. En 5th European Workshop on Structural Health Monitoring . Sorrento, Italy.
  • (3) Torres, B., Payá-Zaforteza, I., Calderón, P. A., Adam, J. M. (2011). Analysis of the strain transfer in a new FBG sensor for Structural Health Monitoring. Engineering Structures, 33(2): 539-548. http://dx.doi.org/10.1016/j.engstruct.2010.11.012
  • (4) Lusas. (2010). Lusas Reference Manual. Surrey (UK). http://www.2.lusas.com/protected/documentation/V14_3/Element%20Reference%20Manual.pdf.
  • (5) Hong-Nan, L., Dong-Sheng, L. Gang-Bing, S. (2004). Recent applications of fiber optic sensors to health monitoring in civil engineering. Engineering Structures, 26(11): 1647-1657. http://dx.doi.org/10.1016/j.engstruct.2004.05.018
  • (6) Fernández-Ordo-ez, J.A., Navarro-Vera, J.R. (1999). Eduardo Torroja, ingeniero/engineer (Bilingual edition Spanish-English). Madrid: Ediciones Pronaos.
  • (7) Desideri, P., Nervi Jr, P.L., Positano, G. (1982). Pier Luigi Nervi. Zurich: Patmos Verlag. PMCid:PMC1153910
  • (8) Orcesi, A. D., Frangopol, D. M., Kim, S. (2010). Optimization of bridge maintenance strategies based on multiple limit states and monitoring. Engineering Structures, 32(3): 627-640. http://dx.doi.org/10.1016/j.engstruct.2009.11.009
  • (9) Shoukry, S.N., Riad, M. Y., William, G. W. (2009). Longterm sensor-based monitoring of an LRFD designed steel girder bridge. Engineering Structures, 31(12): 2954-2965. http://dx.doi.org/10.1016/j.engstruct.2009.07.023
  • (10) Ko, J.M., Ni, Y.Q. (2005). Technology developments in structural health monitoring of large-scale bridges. Engineering Structures, 27(12): 1715-1725. http://dx.doi.org/10.1016/j.engstruct.2005.02.021
  • (11) Majumder, M., Gangopadhyay, T. M., Chakraborty, A.K. (2008). Fibre Bragg gratings in structural health monitoring-Present status and applications. Sensors and Actuators A. 147(1): 150-164. http://dx.doi.org/10.1016/j.sna.2008.04.008
  • (12) Udd, E. (1995). Fiber optic smart structures. New York: John Wiley & Sons Inc.
  • (13) Alan, D. K., Michael, A. D., Heather, J. P, Michel, L. B., Koo, K.P., Askins, C.G., Putnam, M.A., Friebele, E. J. (1997). Fiber Grating Sensors. Journal of Lightwave Technology, 15(8): 1442-1463. http://dx.doi.org/10.1109/50.618377
  • (14) Thévenaz, L., Foaleng-Mafang, S., Kwang-Yong S., Sanghoon, C., Beugnot, J-C., Primerov, N., Tur, M. (2010). Recent Progress Towards Centimetric Spatial Resolution in Distributed Fibre Sensing. Proc. of SPIE Fourth European Workshop on Optical Fibre Sensors. nº 765309. http://dx.doi.org/10.1117/12.868432
  • (15) Torres-Górriz, B. (2012). Definición de las pautas y condiciones de monitorización, encapsulado y fijación de sensores de fibra óptica para la medida de deformación y temperaturas en estructuras (Tesis Doctoral). Valencia: Universitat Politècnica de València.
  • (16) Bueno-Martínez, A. (2008). Diseño y caracterización de un sensor óptico autocompensado en temperatura para la medida de deformaciones en estructuras de ingeniería civil y desarrollo de un sistema de interrogación (Tesis Final de Máster). Valencia: ETSIT - Universidad Politécnica de Valencia.