Analysis of paleoenvironmental changes during paleogene hyperthermal events based on benthic foraminifera

  1. Arreguín Rodríguez, Gabriela de Jesús
Supervised by:
  1. Ellen Thomas Director
  2. Laia Alegret Badiola Director

Defence university: Universidad de Zaragoza

Fecha de defensa: 13 March 2017

Committee:
  1. Francisco Javier Sierro Sánchez Chair
  2. Alejandro Cearreta Bilbao Secretary
  3. Luca Giusberti Committee member

Type: Thesis

Teseo: 458707 DIALNET

Abstract

RESUMEN El Paleógeno representa un periodo crítico en la historia de la Tierra caracterizado por una intensa variabilidad climática durante un clima cálido (invernadero). La tendencia de calentamiento registrada desde el Paleoceno hasta el Eoceno fue interrumpida por varios eventos de calentamiento extremo llamados hipertermales, definidos principalmente por perturbaciones del ciclo de carbono incluyendo excursiones de los isótopos de carbono y disolución del carbonato en medios profundos. El más extremo de esos eventos fue el Máximo Térmico del Paleoceno-Eoceno (PETM), que causó perturbaciones severas en los foraminíferos bentónicos profundos, incluyendo su mayor extinción del Cenozoico. En consecuencia, se ha cuestionado si estos organismos fueron afectados de forma similar durante los hipertermales de menor magnitud (ocurridos previa y posteriormente a la extinción). Esta Tesis está enfocada en el análisis de foraminíferos bentónicos profundos durante hipertermales de diferente magnitud, con el fin de identificar los factores paleoambientales que controlaron la respuesta de las asociaciones. La falta de consenso en la taxonomía de los foraminíferos bentónicos del Eoceno temprano dificulta la comparación de estos organismos entre diferentes sondeos/secciones descritos por diferentes autores. En esta Tesis se recopilan por primera vez las especies de foraminíferos bentónicos más comunes del Ypresiense (Eoceno inicial), incorporando datos de 17 sondeos oceánicos distribuidos globalmente. Se sugiere que los taxones más comunes y más abundantes durante el Ypresiense en los Océanos Pacífico, Atlántico e Índico debieron haber sido los más resistentes a continuas perturbaciones ambientales. Se han estudiado las asociaciones de foraminíferos bentónicos de tres sondeos oceánicos (Sitio DSDP 550, Sitios ODP 865 y 1262) y de una sección terrestre (Caravaca, Sur de España) a lo largo de varios eventos hipertermales del Paleoceno (Dan-C2 y LDE; previos a la extinción) y Eoceno (PETM, ETM2, H2 y ETM3; durante y posteriores a la extinción). En general, los eventos del Paleoceno no tuvieron un mayor impacto en los foraminíferos bentónicos; mientras que los hipertermales menores del Eoceno causaron mayores perturbaciones ambientales, reflejadas en las asociaciones, aunque en menor medida que en el PETM. Dichas perturbaciones incluyen cambios en las condiciones tróficas en el fondo oceánico e incremento de la disolución del carbonato cálcico. Asimismo, se ha evaluado el impacto de la disolución del CaCO3 en la extinción y cambios en los foraminíferos bentónicos durante el PETM. La disolución del carbonato cálcico también afectó a los foraminíferos bentónicos durante los hipertermales menores, pero no representa el umbral crítico en el control de las asociaciones. La magnitud de la excursión en los isótopos de carbono parece correlacionarse significativamente con el descenso en la diversidad de los foraminíferos bentónicos, considerando que dicha magnitud refleja la cantidad de compuestos de carbono liberados al sistema océano-atmósfera, y por lo tanto (aunque no necesariamente de manera linear) la cantidad de calentamiento y disolución. Se sugiere que el calentamiento durante los hipertermales representa dicho umbral crítico, ya que las altas temperaturas pudieron haber causado un descenso en la resiliencia de los foraminíferos bentónicos, y consecuentemente una mayor vulnerabilidad o susceptibilidad a las perturbaciones ambientales asociadas a los hipertermales, tales como cambios en las condiciones tróficas (las mayores temperaturas aumentaron las tasas metabólicas y, consecuentemente, los requerimientos alimenticios de los foraminíferos) y/o disolución del carbonato cálcico. RESUMEN DE LA BIBLIOGRAFÍA Agnini, C., Macrì, P. Backman, J., Brinkhuis, H., Fornaciari, E., Giusberti, L., Luciani, V., Rio, D., Sluijs, A., and Speranza, F., 2009. An early Eocene carbon cycle perturbation at ~52.5 Ma in the Southern Alps: Chronology and biotic response. Paleoceanography, 24, PA2209, doi:10.1029/2008PA001649. Alegret, L., and Thomas, E., 2001. Upper Cretaceous and lower Paleogene benthic foraminifera from northeastern Mexico. Micropaleontology, 47 (4), 269–316. Alegret, L., and Thomas, E., 2005. Cretaceous/Paleogene boundary bathyal paleoenvironments in the central North Pacific (DSDP [Deep Sea Drilling Project] Site 465), the Northwestern Atlantic (ODP [Ocean Drilling Program] Site 1049), the Gulf of Mexico and the Tethys: The benthic foraminiferal record. Palaeogeography, Palaeoclimatology, Palaeoecology, 224, 53–82. Alegret, L., and Thomas, E., 2009. Food supply to the seafloor in the Pacific Ocean after the Cretaceous Paleogene boundary event. Marine Micropaleontology, 73, 105–116. Alegret, L., Ortiz, S., Orue-Etxebarria, X., Bernaola, G., Baceta, J.I., Monechi, S., Apellaniz, E., and Pujalte, V., 2009a. The Paleocene–Eocene thermal maximum: new data from the microfossil turnover at Zumaia section. Palaios, 24, 318–328. Alegret, L., Ortiz, S., and Molina, E., 2009b. Extinction and recovery of benthic foraminifera across the Paleocene–Eocene Thermal Maximum at the Alamedilla section (Southern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 279, 186–200. Alegret, L., Ortiz, S., Arenillas, I., and Molina, E., 2010. What happens when the ocean is overheated? The foraminiferal response across the Paleocene–Eocene Thermal Maximum at the Alamedilla section (Spain). Geological Society of America Bulletin, 122 (9/10), 1616-1624. Alegret, L., Thomas, E., and Lohmann, K., 2012. End-Cretaceous marine mass extinction not caused by productivity collapse. Proceedings of the National Academy of Sciences, 109 (3), 728-732. Berggren, W.A., and Aubert, J., 1975. Paleocene benthonic foraminiferal biostratigraphy, paleobiogeography and paleoecology of Atlantic-Tethyan regions: Midway-type fauna. Palaeogeography, Palaeoclimatology, Palaeoecology, 18, 73-192. Bernaola, G., Baceta, J.I., Orue-Etxebarria, X., Alegret, L., Martín-Rubio, M., Arostegui, J., and Dinarès-Turell, J., 2007. Evidence of an abrupt environmental disruption during the mid-Paleocene biotic event (Zumaia section, western Pyrenees). Geological Society of America Bulletin, 119, 785–795. Boltovskoy, E., Scott, D.B., and Medioli, F.S., 1991. Morphological variations of benthic foraminiferal tests in response to changes in ecological parameters; a review. Journal of Paleontology, 65, 175–185. Coccioni, R., Frontalini, F., Bancalà, G., Fornaciari, E., Jovane, L., and Sprovieri, M., 2010. The Dan-C2 hyperthermal event at Gubio (Italy): Global implications, environmental effects, and cause(s). Earth and Planetary Science Letters, 297, 298–305. Coccioni, R., Bancalà, G., Catanzarit, R., Fornaciari, E., Frontalini, F., Giusberti, L., Jovane, L., Luciani, V., Savian, J., and Sprovieri, M., 2012. An integrated stratigraphic record of the Palaeocene–lower Eocene at Gubbio (Italy): new insights into the early Palaeogene hyperthermals and carbon isotope excursions. Terra Nova, 24, 380-386. Cramer, B.S., Wright, J.D., Kent, D.V., Aubry, M.P., 2003. Orbital climate forcing of δ13C excursions in the late Paleocene–early Eocene (chrons C24n–C25n). Paleoceanography, 18 (4), 1097, http://dx.doi.org/10.1029/ 2003PA000909. D'haenens, S., Bornemann, A., Claeys, P., Röhl, U., Steurbaut, E., and Speijer, R.P., 2014. A transient deep-sea circulation switch during Eocene Thermal Maximum 2. Paleoceanography, 29, http://dx.doi.org/10.1002/2013PA002567. Dinarès-Turell, J., Pujalte, V., Stoykova, K., Baceta, J.I., Ivanov, M., 2012. The Palaeocene “top chron C27n” transient greenhouse episode: evidence from marine pelagic Atlantic and peri-Tethyan sections. Terra Nova, 24, 477–486. Foster, L.C., Schmidt, D.N., Thomas, E., Arndt, S., and Ridgwell, A., 2013. Surviving rapid climate change in the deep-sea during the Paleogene hyperthermals. Proceedings of the National Academies of Science, 110, 9273-9276. Frontalini, F., Coccioni, R., Catanzariti, R., Jovane, L., Savian, J.F., and Sprovieri, M., 2016. The Eocene Thermal Maximum 3: Reading the environmental perturbations at Gubbio (Italy). In: Menichetti, M., Coccioni, R., and Montanari, A., (Eds.), The Stratigraphic Record of Gubbio: Integrated Stratigraphy of the Late Cretaceous–Paleogene Umbria-Marche Pelagic Basin. Geological Society of America Special Paper, 524, doi:10.1130/2016.2524(11). Galeotti, S., Krishnan, S., Pagani, M., Lanci, L., Gaudio, A., Zachos, J.C., Monechi, S., Morelli, G., and Lourens, L., 2010. Orbital chronology of Early Eocene hyperthermals from the Contessa Road section, central Italy. Earth and Planetary Science Letters, 290, 192–200. Giusberti, L., Boscolo-Galazzo, F., and Thomas, E., 2016. Variability in climate and productivity during the Paleocene-Eocene Thermal Maximum in the western Tethys (Forada section). Climate of the Past, 12, 213-240. Gooday, A.J., 2003. Benthic foraminifera (Protista) as tools in deep-water palaeoceanography: environmental influences on faunal characteristics. In: Southward, A.J., Tyler, P.A., Young, C.M., and Fuiman, L.A. (Eds.), Advances in marine biology. Academic Press, 46, 1-90. Gooday, A.J., Levin L.A., Linke, P., and Heeger, T., 1992. The role of benthic foraminifera in deep-sea food webs and carbon cycling. In: Rowe, G.T., and Pariente, V. (Eds.), Deep-sea food chains and the global carbon cycle. Kluwer Academic Publishers, Dordrecht, 63–91. Hammer, Ø., Harper, D.A.T., and Ryan, P.D., 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4 (1), 1–9. Hayward, B.W., Kawata, S., Sabaa, A., Grenfell, H., Van Kerckhoven, L., Johnson, K., and Thomas, E., 2012. The last global extinction (Mid-Pleistocene) of deep-sea benthic foraminifera (Chrysalogoniidae, Ellipsoidinidae, Glandulonodosariidae, Plectofrondiculariidae, Pleurostomellidae, Stilostomellidae), Their Late Cretaceous–Cenozoic history and taxonomy. Cushman Foundation for Foraminiferal Research Special Publications, 43, 408 pp. Hoegh-Guldberg, O., and Bruno J.F., 2010. The impact of climate change on the world’s marine ecosystems. Science, 328 (5985), 1523–1528. Holling, C.S., 1973. Resilience and stability of ecological systems. Annual Review of Ecological Systems, 4, 1–23. Jennions, S.M., Thomas, E., Schmidt, D.N., Lunt, D., and Ridgwell, A., 2015. Changes in benthic ecosystems and ocean circulation in the Southeast Atlantic across Eocene Thermal Maximum 2. Paleoceanography, http://dx.doi.org/10.1002/2015 PA002821. Jorissen, F.J., De Stigter, H.C., and Widmark, J.G.V., 1995. A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology, 22, 3–15. Jorissen, F.J., Fontanier, C., and Thomas, E., 2007. Paleoceanographical proxies based on deep-sea benthic foraminiferal assemblages characteristics. In: Hillaire-Marcel, C., and Vernal, A. (Eds.), Proxies in Late Cenozoic Paleoceanography: Part 2: Biological Tracers and Biomarkers. Elsevier, Amsterdam, Netherlands, 263–326. Kaminski, M.A., and Gradstein, F.M., 2005. Atlas of Paleogene cosmopolitan deep-water agglutinated foraminifers. Grzybowski Foundation, Special Publication, 10, 548 pp. Katz, M.E., and Miller, K.G., 1991. Early Paleogene benthic foraminiferal assemblages and stable isotopes in the Southern Ocean. In: Ciesielski, P.F., Kristoffersen, Y., et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX, 114, 481–512. Kennett, J.P., and Stott, L.D., 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 353, 225–229. Lauretano, V., Littler, K., Polling, M., Zachos, J.C., and Lourens, L.J., 2015. Frequency, magnitude and character of hyperthermal events at the onset of the Early Eocene Climatic Optimum. Climate of the Past, 11, 1313-1324. Leon-Rodriguez, L., and Dickens, G.R., 2010. Constraints on ocean acidification associated with rapid and massive carbon injections: the early Paleogene record at ocean drilling program site 1215, equatorial Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 298, 409–420. Littler, K., Röhl, U., Westerhold, T., and Zachos, J.C., 2014. A high-resolution benthic stable isotope record for the South Atlantic: implications for orbital-scale changes in Late Paleocene–Early Eocene climate and carbon cycling. Earth and Planetary Science Letters, 401, 18–30. Loeblich Jr., A.R., and Tappan, H., 1988. Foraminifera Genera and Their Classification. Van Nostrand Reinhold Company Inc., New York, doi: 10.1007/978-1-4899-5760-3. Lourens, L.J., Sluijs, A., Kroon, D., Zachos, J.C., Thomas, E., Röhl, U., Bowles, J., and Raffi, I., 2005. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature, 435, 1083–1087. McInerney, F.A., and Wing, S., 2011. The Paleocene–Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annual Review of Earth and Planetary Sciences, 39, 489–516. Murray, J.W., 2006. Ecology and Applications of the Benthic Foraminifera. Cambridge University Press, UK, 426 pp. Nicolo, M.J., Dickens, G.R., Hollis, C.J., and Zachos, J.C., 2007. Multiple early Eocene hyperthermals: their sedimentary expression on the New Zealand continental margin and in the deep sea. Geology, 35, 699–702. Payros, A., Ortiz, S., Alegret, L., Orue-Etxebarria, X., Apellaniz, E., and Molina, E., 2012. An early Lutetian carbon-cycle perturbation: insights from the Gorrondatxe section (western Pyrenees, Bay of Biscay). Paleoceanography, 27 (2), PA2213, http://dx.doi.org/10.1029/2012PA002300. Penman, D.E., Hoenisch, B., Zeebe, R.E., Thomas, E., and Zachos, J.C., 2014. Rapid and sustained surface ocean acidification during the Paleocene-Eocene Thermal maximum. Paleoceanography, 29, 357-369. Quillévéré, F., Norris, R.D., Kroon, D., and Wilson, P.A., 2008. Transient ocean warming and shifts in carbon reservoirs during the early Danian. Earth and Planetary Science Letters, 265, 600–615. Sexton, P.F., Norris, R.D., Wilson, P.A., Pälike, H., Westerhold, T., Röhl, U., Bolton, C.T., and Gibbs, S., 2011. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon. Nature, 471, 349–352. Sprong, J., Youssef, M.A., Bornemann, A., Schulte, P., Steurbaut, E., Stassen, P., Kouwenhoven, T.J., and Speijer, R.P., 2011. A multi-proxy record of the Latest Danian Event at Gebel Qreiya, Eastern Desert, Egypt. Journal of Micropaleontology, 30, 167–182. Sprong, J., Kouwenhoven, T.J., Bornemann, A., Schulte, P., Steurbaut, E., Youssef, M., and Speijer, R.P., 2012. Characterization of the latest Danian event by means of benthic foraminiferal assemblages along a depth transect at the southern Tethyan margin (Nile Basin, Egypt). Marine Micropaleontology, 86–87, 15–31. Stap, L., Sluijs, A., Thomas, E., and Lourens, L., 2009. Patterns and magnitude of deep sea carbonate dissolution during Eocene Thermal Maximum 2 and H2, Walvis Ridge, South-Eastern Atlantic Ocean. Paleoceanography, 24, PA1211, http://dx.doi.org/10.1029/2008PA001655. Stap, L., Lourens, L.J., Thomas, E., Sluijs, A., Bohaty, S., and Zachos, J.C., 2010a. High-resolution deep-sea carbon and oxygen isotope records of Eocene Thermal Maximum 2 and H2. Geology, 38, 607–610. Stap, L., Lourens, L., Van Dijk, A., Schouten, S., and Thomas, E., 2010b. Coherent pattern and timing of the carbon isotope excursion and warming during Eocene Thermal Maximum 2 as recorded in planktic and benthic foraminifera. Geochemistry, Geophysics, Geosystems, 11, Q11011, doi:10.1029/2010GC003097. Takeda, K., and Kaiho, K., 2007. Faunal turnovers in central Pacific benthic foraminifera during the Paleocene-Eocene thermal maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 251, 175–197. Thomas, E., 1998. The biogeography of the late Paleocene benthic foraminiferal extinction. In: Aubry, M.-P., Lucas, S.G.., and Berggren, W.A. (Eds.), Late Paleocene-early Eocene biotic and climatic events in the marine and terrestrial records. Columbia University Press, 214-243. Thomas, E., 2003. Extinction and food at the seafloor: A high-resolution benthic foraminiferal record across the Initial Eocene Thermal Maximum, Southern Ocean Site 690. In: Wing, S.L., Gingerich, P.D., Schmitz, B., and Thomas, E. (Eds.), Causes and Consequences of Globally Warm Climates in the Early Paleogene. Geological Society of America, Special Paper, 369, 319–332. Thomas, E., 2007. Cenozoic mass extinctions in the deep sea; what disturbs the largest habitat on Earth? In: Monechi, S., Coccioni, R., and Rampino, M. (Eds.), Large ecosystem perturbations: Causes and consequences. Geological Society of America, Special Paper, 424, 1–24. Thomas, E., and Zachos, J.C., 2000. Was the late Paleocene thermal maximum a unique event? Geologiska Föreningen i Stockholm Förhandlingar, 122, 169–170. Thomas, E., Zachos, J.C., and Bralower, T.J., 2000. Deep-sea environments on a warm Earth: latest Paleocene–early Eocene. In: Huber, B., et al. (Eds.), Warm climates in Earth history. Cambridge University Press, UK, 132–160. Tjalsma, R.C., and Lohmann, G.P., 1983. Paleocene–Eocene bathyal and abyssal benthic foraminifera from the Atlantic Ocean. Micropaleontology, Special Publication, 4, 1–89. Van Morkhoven, F.P.C.M., Berggren, W.A., and Edwards, A.S., 1986. Cenozoic Cosmopolitan deep-water benthic foraminifera. Bulletin des Centres de Recherche Exploration —Production Elf-Aquitaine, Memoir 11, Pau, France, 421 pp. Westerhold, T., Röhl, U., Laskar, J., Raffi, I., Bowles, J., Lourens, L.J., and Zachos, J.C., 2007. On the duration of magnetochrons C24r and C25n and the timing of early Eocene global warming events: implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect. Paleoceanography, 22, PA2201, http://dx.doi.org/10.1029/2006PA001322. Winguth, A., Thomas, E., and Winguth, C., 2012. Global decline in ocean ventilation, oxygenation and productivity during the Paleocene-Eocene Thermal Maximum - Implications for the benthic extinction. Geology, 40, 263-266. Zachos, J.C., Pagani, M., Sloan, L.C., Thomas, E., and Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693. Zachos, J.C., Röhl, U., Schellenberg, S.A., Sluijs, A., Hodell, D.A., Kelly, D.C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L.J., McCarren, H., and Kroon, D., 2005. Rapid acidification of the ocean during the Paleocene-Eocene Thermal Maximum. Science, 308, 1611–1615. Zachos, J.C., Dickens, G.R., and Zeebe, R.E., 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451, 279–283. Zachos, J.C., McCarren, H., Murphy, B., Röhl, U., and Westerhold, T., 2010. Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: implications for the origin of hyperthermals. Earth and Planetary Science Letters, 299, 242–249.