Bayesian structured antedependence model proposals for longitudinal data

  1. Edwin Castillo-Carreno 1
  2. Edilberto Cepeda-Cuervo 1
  3. Vicente Núñez-Antón 2
  1. 1 Universidad Nacional de Colombia
    info

    Universidad Nacional de Colombia

    Bogotá, Colombia

    ROR https://ror.org/059yx9a68

  2. 2 University of the Basque Country UPV/EHU.
Revista:
Sort: Statistics and Operations Research Transactions

ISSN: 1696-2281

Año de publicación: 2020

Volumen: 44

Número: 1

Páginas: 171-200

Tipo: Artículo

DOI: 10.2436/20.8080.02.99 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Sort: Statistics and Operations Research Transactions

Resumen

An important problem in Statistics is the study of longitudinal data taking into account the effect of other explanatory variables, such as treatments and time and, simultaneously, the incorporation into the model of the time dependence between observations on the same individual. The latter is specially relevant in the case of nonstationary correlations, and nonconstant variances for the different time point at which measurements are taken. Antedependence models constitute a well known commonly used set of models that can accommodate this behaviour. These covariance models can include too many parameters and estimation can be a complicated optimization problem requiring the use of complex algorithms and programming. In this paper, a new Bayesian approach to analyse longitudinal data within the context of antedependence models is proposed. This innovative approach takes into account the possibility of having nonstationary correlations and variances, and proposes a robust and computationally efficient estimation method for this type of data. We consider the joint modelling of the mean and covariance structures for the general antedependence model, estimating their parameters in a longitudinal data context. Our Bayesian approach is based on a generalization of the Gibbs sampling and Metropolis-Hastings by blocks algorithm, properly adapted to the antedependence models longitudinal data settings. Finally, we illustrate the proposed methodology by analysing several examples where antedependence models have been shown to be useful: the small mice, the speech recognition and the race data sets.

Información de financiación

This work was supported by the Department of Statistics, Faculty of Sciences of the Uni-versidad Nacional de Colombia, Ministerio de Economía y Competitividad, Agencia Es-tatal de Investigación (AEI), Fondo Europeo de Desarrollo Regional (FEDER), the Department of Education of the Basque Government (UPV/EHU Econometrics Research Group), and Universidad del País Vasco UPV/EHU under research grants MTM2013-40941-P (AEI/FEDER, UE), MTM2016-74931-P (AEI/FEDER, UE), IT-642-13, IT1359-19 and UFI11/03.

Referencias bibliográficas

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.
  • Baldassi, C. (2017). A method to reduce the rejection rate in Monte Carlo Markov chains. Journal of Statistical Mechanics: Theory and Experiment, 2017, 033301.
  • Brown, P.J., Kenward, M.G. and Bassett, E.E. (2001). Bayesian discrimination with longitudinal data. Biostatistics, 2, 417–432.
  • Cepeda-Cuervo, E. (2001). Modelagem da Variabilidade emModelos Lineares Generalizados. Unpublished Math Ph.D. Thesis. Mathematics Institute, Universidade Federal do Rı́o de Janeiro, Brazil.
  • Cepeda-Cuervo, E. (2011). Generalized spatio-temporal models. SORT, 35, 165–178.
  • Cepeda, E.C. and Gamerman, D. (2004). Bayesian modeling of joint regressions for the mean and covariance matrix. Biometrical Journal, 46, 430–440.
  • Cepeda-Cuervo, E. and Núñez-Antón, V. (2007). Bayesian joint modelling of the mean and covariance structures for normal longitudinal data. SORT, 31, 181–200.
  • Cepeda-Cuervo, E. and Núñez-Antón, V. (2009). Bayesian modelling of the mean and covariance matrix in normal nonlinear models. Journal of Statistical Computation and Simulation, 79, 837–853.
  • Choi, H., Jang, E. and Alemi, A.A. (2018). WAIC, but Why? Generative ensembles for robust anomaly detection. arXiv preprint arXiv:1810.01392.
  • Congdon, P. (2020). Bayesian Hierarchical Models With Applications Using R. Second edition. CRC Press, London.
  • Diggle, P.J., Heagerty, P., Liang, K.-Y. and Zeger, S. (2002). Analysis of Longitudinal Data (2nd edition). Oxford University Press, Oxford.
  • Everitt, B. (1994a). Exploring multivariate data graphically: A brief review with examples. Journal of Applied Statistics, 21, 63–94.
  • Everitt, B. (1994b). A Handbook of Statistical Analyses Using S-Plus. Chapman and Hall, London.
  • Fahrmeir, L., Kneib, T. and Lang, S. (2013). Bayesian multilevel models. In: Scott, M.A., Simonoff, J.S. and Marx. B.D. (eds). The SAGE Handbook of Multilevel Modeling. SAGE, London, 53–71.
  • Fitzmaurice, G., Davidian, M., Verbeke, G. and Molenberghs, G. (2009). Longitudinal Data Analysis. CRC Press, New York.
  • Gabriel, K.R. (1962). Ante-dependence analysis of an ordered set of variables. Annals of Mathematical Statistics, 33, 201–212.
  • Gamerman, D. and Lopes, H.F. (2006). Markov Chain Monte Carlo. Stochastic Simulation for Bayesian Inference (2nd edition). CRC Press, New York.
  • Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis, 1, 515–533.
  • Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B., (2014a). Hierarchical Linear Models in Bayesian Data Analysis. Chapman and Hall/CRC Press, Boca Raton, FL.
  • Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (2014b). Bayesian Data Analysis, vol. 2. Chapman and Hall/CRC Press, Boca Raton, FL.
  • Gill, J. (2014). Bayesian Hierarchical Models in Bayesian Methods: A Social and Behavioral Sciences Approach. CRC Press, Boca Raton, FL.
  • Hui, S.L. and Berger, J.O. (1983). Empirical Bayes estimation of rates in longitudinal studies. Journal of the American Statistical Association, 78, 753–760.
  • Izenman, A.J. and Williams, J.S. (1989). A class of linear spectral models and analyses for the study of longitudinal data. Biometrics, 45, 831–849.
  • Jaffrézic, F. and Pletcher, S.D. (2000). Statistical Models for estimating the genetic basis of repeated measures and other function-valued traits. Genetics, 156, 913–922.
  • Jaffrézic, F., White, I.M.S., Thompson. R. and Visscher, P.M. (2002). Contrasting models for lactation curve analysis. Journal of Dairy Science, 85, 968–975.
  • Jiang, J., Zhang, Q., Ma, L., Li, J., Wang, Z. and Liu, J.-F. (2015). Joint prediction of multiple quantitative traits using a Bayesian multivariate antedependence model. Heredity, 115, 29–36.
  • Laird, N.M. (1988). Missing data in longitudinal studies. Statistics in Medicine, 7, 305–315.
  • Macchiavelli, R.E. and Arnold, S.F. (1994). Variable-order antedependence models. Communications in Statistics Theory and Methods, 23, 2683–2699.
  • Núñez-Antón, V. and Woodworth, G.G. (1994). Analysis of longitudinal data with unequally spaced observations and time-dependent correlated errors. Biometrics, 50, 445–456.
  • Núñez-Antón, V. and Zimmerman, D.L. (2001). Modelización de datos longitudinales con estructuras de covarianza no estacionarias: Modelos de coeficientes aleatorios frente a modelos alternativos. Qüestiió, 25, 225–262.
  • Piironen, J. and Vehtari, A. (2017). Comparison of Bayesian predictive methods for model selection. Statistics and Computing, 27, 711–735.
  • Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation. Biometrika, 86, 677–690.
  • R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
  • Schwarz, G.E. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.
  • Spiegelhalter, D.J., Best, N.G., Carlin, B.P. and Van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society Series B, 64, 583–616.
  • Spiegelhalter, D.J., Thomas, A., Best, N. and Lunn, D. (2003). WinBUGS User Manual. MRC Biostatistics Unit, Cambridge, UK. www.mrc-bsu.cam.ac.uk/bugs.
  • Tyler, R.S., Abbas, P., Tye-Murray, N., Gantz, B.J., Knutson, J.F., McCabe, B.F., Lansing, C., Brown, C.,
  • Woodworth, G., Hinrichs, J. and Kuk, F. (1988). Evaluation of five different cochlear implant designs: Audiologic assessment and predictors of performance. The Laryngoscope, 98, 1100–1106.
  • Vehtari, A., Gelman, A. and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-outcross-validation and WAIC. Statistics and Computing, 27, 1413–1432. Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. Springer, New York.
  • Ware, J.H. (1985). Linear models for the analysis of longitudinal studies. The American Statistician, 39, 95–101.
  • Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research, 11, 3571–3594.
  • Weiss, R.E. (2005). Modeling Longitudinal Data. Springer, New York.
  • Yang, W. and Tempelman, R.J. (2012). A Bayesian Antedependence Model for Whole Genome Prediction. Genetics, 190, 1491–1501.
  • Zimmerman, D.L. (2000). Viewing the correlation structure of longitudinal data through a PRISM. The American Statistician, 54, 310–318.
  • Zimmerman, D.L. and Núñez-Antón, V. (1997). Modelling longitudinal and spatially correlated data: Antedependence models for longitudinal data. In: Gregoire, T.G., Brillinger, D.R., Diggle, P.J., RussellCohen, E., Warren, W.G. andWolfinger, E. (eds).Modelling Longitudinal and Spatially Correlated Data.
  • Methods, Applications, and Future Directions. Springer-Verlag, New York. Lecture Notes in Statistics No. 122, 63–76.
  • Zimmerman, D.L and Núñez-Antón, V. (2010). Antedependence Models for Longitudinal Data. CRC Press, New York.
  • Zimmerman, D.L., Núñez-Antón, V. and El Barmi, H. (1998). Computational aspects of likelihood-based estimation of first-order antedependence models. Journal of Statistical Computation and Simulation, 60, 67–84.