Evaluación de una secuencia de enseñanza de termoquímica para la formación de profesores

  1. Furió Mas, Carles 1
  2. Furió Gómez, Cristina 1
  3. Guisasola Aranzabal, Jenaro 2
  1. 1 Universitat de València
    info

    Universitat de València

    Valencia, España

    ROR https://ror.org/043nxc105

  2. 2 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

Journal:
Didáctica de las ciencias experimentales y sociales

ISSN: 0214-4379

Year of publication: 2020

Issue: 38

Pages: 133-152

Type: Article

DOI: 10.7203/DCES.38.15577 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Didáctica de las ciencias experimentales y sociales

Sustainable development goals

Abstract

The objective of this paper is to design a teaching sequence about thermochemistry as a guided inquiry for High School, implement it in two training courses for preservice Physics and Chemistry teachers and evaluate its impact on the improvement of their knowledge about thermochemistry. Thirty-five undergraduate students of the last course of Physics, Chemistry and Chemical Engineering participated and discussed in small groups the proposed sequence as an activity program for 12 two-hour sessions. To test the effectiveness of the teaching sequence, a pre-test/post-test design was applied based on a questionnaire with 5 open-ended questions in which they had to predict and explain the thermal effects in 3 physical and 2 chemical phenomena. The results show that the thermochemical knowledge of future teachers improves, although the size effect achieved has not been the same for each phenomenon.

Bibliographic References

  • Al-Balushi, S.M. (2009). Factors influencing pre-service science teachers’ imagination at the microscopic level in chemistry. International Journal of Mathematical Education in Science and Technology, 7, 1089-1110. DOI:10.1007/s10763-009-9155-1
  • Atkins, P.W. (1992). La segunda ley. Barcelona: Prensa Científica, S.A.
  • Bain, K., Moon, A., Mack, M.R. y Towns, M.H. (2014). A review of research on the teaching and learning of thermodynamics at the university level. Chemistry Education Research and Practice, 15, 320-335. DOI: 10.1039/C4RP00011K
  • Barlet, R. y Mastrot, G. (2000). L’alghorithmisation-refuge, obstacle à la conceptualisation. L’exemple de la thermochimie en premier cycle universitaire. Didaskalia, 17, 123-159.
  • Blackburn, V., y Moissan, C. (1986). The in-service training of teachers in the twelve Member States of the European Communities. Maastrich: Presses interuniversitaires européennes.
  • Chang, R. (1992). Química (4ª edición). México: McGraw-Hill. Doménech, J.L., Limiñana, R. y Menargues, A. (2013). La superficialidad en la enseñanza del concepto de energía: una causa del limitado aprendizaje alcanzado por los estudiantes de Bachillerato. Enseñanza de las Ciencias, 31(3), 103-119.
  • Furió C., Azcona, R. y Guisasola J. (2006). Enseñanza de los conceptos de cantidad de sustancia y de mol basada en el modelo de aprendizaje como investigación orientada. Enseñanza de las Ciencias, 24(1), 43-58.
  • Furió C., Calatayud M.L., Bárcenas S.L. y Padilla, O.M (2000). Functional fixedness and functional reduction as common sense reasonings in chemical equilibrium and in geometry and polarity of molecules. Science Education, 84, 545-565. DOI: 10.1002/1098- 237X(200009)84:5%3C545::AID-SCE1%3E3.0.CO;2-1
  • Furió C., Guisasola J., Almudí J.M. y Ceberio M.J. (2003). Learning the electric field concept as oriented research activity. Science Education, 87, 640-662. DOI: 10.1002/sce.10100
  • Furió-Gómez, C. y Furió-Más, C.(2016). Dificultades conceptuales y epistemológicas de futuros profesores de Física y Química en las explicacions energéticas de fenómenos físicos y químicos. Enseñanza de las Ciencias, 34(3), 7-24. DOI: 10.5565/rev/ensciencias.1644
  • Furió-Más, C., Solbes-Matarredona, J. y Furió-Gómez, C. (2008). Towards a proposal for effective ongoing training programmes for science teachers. Problems of Education in the 21st century, 6, 60-70.
  • Granville, M.F. (1985). Student misconceptionss in Thermodynamics. Journal of Chemical Education, 62(10), 847-848. DOI: 10.1021/ed062p847
  • Guisasola, J., Furió, C. y Ceberio, M. (2008). Science Education based on Developing Guided Research. En M.V. Thomase (Ed.), Science Education in Focus (pp. 173-202). Nueva York: Nova Science Publishers, Inc.
  • Guisasola, J., Zuza, C., Ametller, J. y Gutierrez-Berraondo, J. (2017). Evaluating and redesigning teaching learning sequences at the introductory physics level. Physics Review Physics Education Research, 13, 020139. DOI: 10.1103/PhysRevPhysEducRes.13.020139
  • Hadfield, L.C. y Wieman, C.E. (2010). Student interpretations of equations related to the first law of thermodynamics. Journal of Chemical Education, 87(7), 750-755. DOI: 10.1021/ed1001625
  • Kermen, I. y Meheut, M. (2011). Grade 12 french students’use of a thermodynamic model for predicting the direction of incomplete chemical changes. International Journal of Science Education, 33(13), 1745-1773. DOI: 10.1080/09500693.2010.519008
  • Loverude, M.E., Kautz, C.H. y Heron, P.R. (2002). Student understanding of the first law of thermodynamics: Relating work to the adiabatic compression of an ideal gas. American Journal of Physics, 70(2), 137-148. DOI: 10.1119/1.1417532
  • N.R.C. (2000). Inquiry and the National Science Education Standards: A Guide for Teaching and Learning. Washington D.C.: National Academic Press.
  • N.R.C. (2011). A Framework for K-12 Science Education Standards: A Guide for Teaching and Learning. Washington D.C.: National Academic Press.
  • Nilson, T. y Niedderer, H. (2014). Undergraduate students’ conceptions of enthalpy, enthalpy change and related concepts. Chemistry Education Research and Practice, 15, 336-353. DOI: 10.1039/C2RP20135F
  • Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H. y Hemmo, V. (2007). Science education now: A renewed pedagogy for the future of Europe. Report to the European Commission of the expert group on science education. Recuperado de https://ec.europa.eu/research/science-society/document_library/pdf_06/report-rocard-onscience-education_en.pdf [10 de febrero de 2020].
  • Solbes, J., Guisasola, J. y Tarín, F. (2009). Teaching energy conservation as a unifying principle in physics. Journal of Science Education and Technology, 18(3), 265-274. DOI: 10.1007/s10956- 009-9149-3
  • Sreemivasulu, B. y Subramaniam, R. (2013). University students’ understanding of chemical thermodynamics. International Journal of Science Education, 35(4), 601-635. DOI: 10.1080/09500693.2012.683460
  • Talanquer, V. (2006). Commonsense chemistry: a model for understanding students’ alternative conceptions. Journal of Chemical Education, 83(5), 811-816. DOI: 10.1021/ed083p811
  • Treagust, D.F., Chittleborough, G. y Mamiala, T.L. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353-1368. DOI: 10.1080/0950069032000070306
  • Viennot, L. (1992). Raisonnement à plusieurs variables: tendances de la pensée commune. Aster, 14, 127-141.
  • Welkovitz, J., Ewen, R.B. y Cohen, J. (1986). Estadística aplicada a las ciencias de la educación. Madrid: Ed. Santillana: Aula XXI.
  • Yerushaldi, E., Cohen, E., Mason, A. y Singh, C. (2012). What do students do when asked to diagnose their mistakes? Does it help them? An atypical quiz context. Physical Review Physics Education Research, 8(2), 020109. DOI: 10.1103/PhysRevSTPER.8.020109