Un análisis de la capacidad espacial en estudios de ingeniería técnica

  1. Arrieta, Iera
  2. Medrano, María Concepción
Revista:
PNA: Revista de investigación en didáctica de la matemática

ISSN: 1887-3987

Año de publicación: 2015

Volumen: 9

Número: 2

Páginas: 85-106

Tipo: Artículo

DOI: 10.30827/PNA.V9I2.6104 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: PNA: Revista de investigación en didáctica de la matemática

Resumen

Desde el siglo pasado se ha recalcado la importancia que tiene la capacidad espacial en la in-teligencia y en la enseñanza-aprendizaje de las Matemáticas. En este trabajo se ha elegido el modelo de Carroll para analizar la capacidad espacial del alumnado de la Escuela Politécnica Universitaria de San Sebastián. Se han planteado tres objetivos: (a) analizar la capacidad es-pacial de los estudiantes de primero en función de la especialidad y del sexo, y en relación con la nota obtenida en dibujo técnico; (b) analizar, igualmente, la capacidad espacial de los estudiantes de tercero; y (c) comparar ambos resultados.

Referencias bibliográficas

  • Arrieta, M. (2003). Capacidad espacial y educación matemática: tres problemas para el futuro de la investigación. Educación Matemática, 15(3), 57-76.
  • Arrieta, M. (2006). La capacidad espacial en la Educación Matemática: estructura y medida. Educación Matemática, 18(1), 125-158.
  • Battista, M. T. (1990). Spatial visualization and gender differences in high school geometry. Journal for Research in Mathematics Education, 21(1), 47-60.
  • Bennett, G. K., Seashore H. G. y Wesman A. G. (1973). DAT. Tests de aptitudes diferenciales (Versión 5, 2000). Madrid, España: TEA.
  • Bishop, A. (1983). Space and geometry. En R. Lesh y M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 175-203). Nueva York, NY: Academic Press.
  • Bishop, A. (1989). Review of research on visualization in mathematics education. Focus on Learning Problems in Mathematics, 11(1), 7-16.
  • Brosnan, M. J. (1998). Spatial ability in children's play with Lego blocks. Perceptual and Motor Skills, 87, 19-28.
  • Burin, D. I., Delgado, A. R. y Prieto, G. (2000). Solution strategies and gender differences in spatial visualization tasks. Psicológica, 21, 275-286.
  • Burt, C. (1949). The structure of mind: A review of the results of factor analysis. British Journal of Educational Psychology, 19, 100-111, 176-199.
  • Carroll, J. B. (1993). Human cognitive abilities. Cambridge, Reino Unido: University Press.
  • Casey, B., Winner, E., Brabeck, M. y Sullivan, K. (1990). Visual-spatial abilities in art, math and science majors: Effects of sex, family, handedness, and spatial experience. En K. J. Gilhooly, M. T. G. Keane, R. H. Logie y G. Erdos (Eds.), Lines of thinking (pp. 275-294). Nueva York, NY: John Wiley and Sons.
  • Cattell, R. B. (1971). Intelligence: Its structure, growth and action. Boston, MA: Houghton-Miflin.
  • Clements, D. H. (2003). Teaching and learning geometry. A research companion to principles and standards for school mathematics. Reston, VA: NCTM.
  • Clements, M. A. (1979). Sex differences in mathematical performance: An historical perspective. Educational Studies in Mathematics, 10, 305-322.
  • Clements, M. A. (1983). The question of how spatial ability is defined and its relevance to mathematics education. Zentralblatt for Didaktik der Mathematik, 1, 8-20.
  • Clements, M. A. (1998). Visualization and mathematics education. Barcelona, España: TIEM.
  • Colom, R., Quiroga, M. A. y De Juan-Espinosa, M. (1999). Are cognitive sex differences disappearing? Evidence from Spanish populations. Personality and Individual Differences, 27(6), 1189-1196.
  • Committee on Support for Thinking Spatially (2006). Learning to think spatially. Washington, DC: The National Academies Press.
  • Cossío, J. (1997). Diagnosis de la habilidad de visualizar en el espacio 3D con estudiantes de Bachillerato (BUP) del Bilbao metropolitano (Tesis doctoral no publicada). Universidad del País Vasco, España.
  • De Juan-Espinosa, M. (1997). Geografía de la ciencia humana. Madrid, España: Pirámide.
  • Delgado, A. R. y Prieto, G. (1997). Introducción a los métodos de investigación de la psicología. Madrid, España: Pirámide.
  • Domínguez de Posada, J. E. (1994). Influencia de las asignaturas gráficas sobre el desarrollo de la visión espacial en los alumnos de escuelas técnicas superiores: estudio monográfico de la ETS de Ingenieros de Caminos, Canales y Puertos de Madrid (Tesis doctoral no publicada). Universidad Politécnica de Madrid, España.
  • Ehrlich, S. B., Levine, S. C. y Goldin-Meadow, S. (2006). The importance of gesture in children's spatial reasoning. Developmental Psychology, 42(6), 1259-1268.
  • Ekstrom, R. B., French, J. W., Harman, H. H. y Dermen, D. (1976). Kit of factor-referenced cognitive tests. Princeton, NJ: Educational Testing Service.
  • Eliot, J. (1987). Models of psychological space. New York, NY: Springer-Verlag.
  • Eliot, J. y Czarnolewski, M. Y. (2007). Development of an everyday spatial behavioral questionnaire. The Journal of General Psychology, 134(3), 361-381.
  • Feingold, A. (1988). Cognitive gender differences are disappearing. American Psychologist, 43(2), 95-103.
  • Gages, T. T. (1994). The interrelationship among spatial ability, strategy used, and learning style for visualization problems (Tesis doctoral no publicada). The Ohio State University, Estados Unidos.
  • García-Ganuza, J. M. (2000). Intervención para mejorar aptitudes espaciales en alumnos de ambos sexos (Tesis doctoral no publicada). Universidad del País Vasco, España.
  • Gersmehl, P. J. (2005). Teaching geography. New York, NY: The Guilford Press.
  • Gersmehl, P. J. y Gersmehl, C. A. (2006). Wanted: A concise list of neurologically defensible and assessable spatial-thinking skills. Research in Geographic Education, 8, 5-38.
  • Gersmehl, P. J. y Gersmehl, C. A. (2007). Spatial thinking by young children: Neurologic evidence for early development and “educability”. Journal of Geography, 106, 181-191.
  • Gustafsson, J. E. (1988). Hierarchical models of individual differences. En R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 4, pp. 35-71). Hillsdale, NJ: Erlbaum.
  • Gutiérrez, A. (1998). Tendencias actuales de investigación en geometría y visualización. Barcelona, España: TIEM.
  • Horn, J. L. (1985). Remodeling old models of intelligence. En B. B. Wolman (Ed.), Handbook of intelligence: Theories, measurement and applications. Nueva York, NY: John Wiley and Sons.
  • Jordan N. C., Kaplan, D., Oláh, L. N. y Locuniak, M. N. (2006). Number sense growth in kindergarten: A longitudinal investigation of children at risk for mathematics difficulties. Child Development, 77, 153-175.
  • Levine, S. C., Huttenlocher, J., Taylor, A. y Langrock, A. (1999). Early sex differences in spatial skill. Developmental Psychology, 35(4), 940-949.
  • Linn, M. C. y Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479-1498.
  • Lohman, D. F. (1979). Spatial ability: A review and reanalysis of the correlation literature. Stanford, CA: Stanford University Technical Report.
  • Maccoby, E. E. y Jacklin, C. N. (1974). The psychology of sex differences. Stanford, CA: University press.
  • Maris, S y Noriega, M. (2010). La competencia espacial. Evaluación en alumnos de nuevo ingreso a la universidad. Educación Matemática, 22(2), 65-91.
  • McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86(5), 889-918.
  • McGlone, J. y Davidson, W. (1973). The Relation between cerebral speech laterality and spatial ability with special reference to sex and hand preference. Neuropsychologia, 11, 105-113.
  • Montello, D. R., Lovelace, L. L., Golledge, R. G. y Self, C. M. (1999). Sex-related differences and similarities in geographic and environmental spatial abilities. Annals of the Association of American Geographers, 89, 515-534.
  • National Council of Teachers of Mathematics (2000). Curriculum and Evaluation Standards for School Mathematics. Reston, VA: NCTM.
  • Rilea, S. L., Roskos-Ewoldsen, B. y Boles, D. B. (2004). Sex differences in spatial ability: A lateralization of function approach. Brain and Cognition, 56(3), 332-343.
  • Sarasua, J. M. (2010). Hacia una categorización de los objetivos geométricos. Propuesta de nuevos descriptores de los niveles de Van Hiele para la representación externa de figuras planas (Tesis doctoral no publicada). Universidad del País Vasco, España.
  • Smith, I. M. (1964). Spatial ability. San Diego, CA: Knapp.
  • Spearman, C. (1927). The abilities of man. Londres, Reino Unido: Macmillan.
  • Tartre, L. A. (1990). Spatial orientation skill and mathematical problem solving. Journal for Research in Mathematics Education, 21(3), 216-229.
  • Tartre, L. A. y Fennema, E. (1995). Mathematics achievement and gender: A longitudinal study of selected cognitive and affective variables (grades 6-12). Educational Studies in Mathematics, 28, 199-217.
  • Thurstone, L. L. (1938). Primary mental abilities. Chicago, IL: University of Chicago Press.
  • Voyer, D. y Bryden, M. P. (1993). Masking and visual field effects on a lateralized rod and-frame test. Canadian Journal of Experimental Psychology, 47, 26-37.