Epiphytic flora on Gelidium corneum (Rhodophyta: Gelidiales) in relation to wave exposure and depth

  1. Endika Quintano
  2. Isabel Díez
  3. Nahiara Muguerza
  4. Alberto Santolaria
  5. José María Gorostiaga
Revista:
Scientia Marina

ISSN: 0214-8358

Año de publicación: 2015

Volumen: 79

Número: 4

Páginas: 479-486

Tipo: Artículo

DOI: 10.3989/SCIMAR.04239.08B DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Scientia Marina

Resumen

El alga formadora de copa Gelidium corneum (Hudson) J.V. Lamouroux tiene un papel fundamental en el funcionamiento de los ecosistemas submareales del mar Cantábrico (norte de España). A pesar de su importancia, se sabe poco sobre los factores que afectan a la distribución de su flora epífita. En este estudio, examinamos dos factores indirectos: la orientación de la costa (N y NO) y la profundidad (3 y 7 m), como factores representativos de la exposición al oleaje y la disponibilidad de luz, respectivamente. Este estudio testa sus efectos sobre la carga total de epífitos, la alfa-diversidad (riqueza de especies, Shannon, Simpson y equitatividad) y la estructura multivariable de la flora epífita que crece sobre G. corneum en las aguas submareales de la costa vasca. Los epífitos más comunes fueron Plocamium cartilagineum, Dictyota dichotoma y Acrosorium ciliolatum. Se observó un efecto interactivo de la orientación de la costa y la profundidad para la composición de especies y la abundancia de la flora epífita. En las localidades con mayor exposición al oleaje la carga epífita era menor y la comunidad menos diversa, sugiriendo que bajo condiciones de un elevado hidrodinamismo los epífitos eran más sus- ceptibles de ser desprendidos de su hospedador. Sin embargo, la disponibilidad de luz solo tuvo un efecto significativo en la distribución de los epífitos por debajo de ciertos umbrales de la acción del oleaje, siendo la carga de epifitos un 30-40% mayor en los fondos someros.

Referencias bibliográficas

  • Altamirano M., Flores-Moya A., Figueroa F.L. 2000. Long-term effect of natural sunlight under various ultraviolet radiation conditions on growth and photosynthesis of intertidal Ulva rigida (Chlorophyceae) cultivated in situ. Bot. Mar. 43: 119-126. http://dx.doi.org/10.1515/BOT.2000.012
  • Anderson L.M., Martone P.T. 2014. Biomechanical consequences of epiphytism in intertidal macroalgae. J. Exp. Biol. 217: 1167-1174. http://dx.doi.org/10.1242/jeb.088955 PMid:24311812
  • Anderson M.J., Gorley R.N., Clarke K.R. 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth, 214 pp.
  • Baer J., Stengel D.B. 2014. Can native epiphytes affect establishment success of the alien seaweed Sargassum muticum (Phaeophyceae)? Biol. Environ. 114B: 41-52. http://dx.doi.org/10.3318/bioe.2014.05
  • Belegratis M.R., Bitis I., Economou-Amilli J.A., et al. 1999. Epiphytic patterns of macroalgal assemblages on Cystoseira species (Fucales, Phaeophyta) in the east coast of Attica (Aegean Sea, Greece). Hydrobiologia 412: 67-80. http://dx.doi.org/10.1023/A:1003852300198
  • Borja A., Aguirrezabalaga F., Martínez J., et al. 2004. Benthic communities, biogeography and resources management. In: Borja A., Collins M. (eds), Oceanography and Marine Environment of the Basque Country. Elsevier, Amsterdam, pp. 455-492. http://dx.doi.org/10.1016/S0422-9894(04)80056-4
  • Borja A., Fontán A., Muxika I. 2013. Interactions between climatic variables and human pressures upon a macroalgae population: Implications for management. Ocean Coast. Manage. 76: 85-95. http://dx.doi.org/10.1016/j.ocecoaman.2013.02.023
  • Bustamante M., Tajadura J., Gorostiaga J.M., et al. 2014. Response of rocky invertebrate diversity, structure and function to the vertical layering of vegetation. Est. Coast. Shelf Sci. 147: 148-155. http://dx.doi.org/10.1016/j.ecss.2014.06.001
  • Chust G., Borja A., Caballero A., et al. 2011. Climate change impacts on coastal and pelagic environments in the southeastern Bay of Biscay. Clim. Res. 48: 307-332. http://dx.doi.org/10.3354/cr00914
  • Colombo-Pallotta M.F., Garcia-Mendoza E., Ladah L.B. 2006. Photosynthetic performance, light absorption, and pigment composition of Macrocystis pyrifera (Laminariales, Phaeophyceae) blades from different depths. J. Phycol. 42: 1225-1234. http://dx.doi.org/10.1111/j.1529-8817.2006.00287.x
  • Díez I., Santolaria A., Gorostiaga J.M. 2003. The relationship of environmental factors to the structure and distribution of subtidal seaweed vegetation of the western Basque coast (N Spain). Est. Coast. Shelf Sci. 56: 1041-1054. http://dx.doi.org/10.1016/S0272-7714(02)00301-3
  • Díez I., Muguerza N., Santolaria S., et al. 2012. Seaweed assemblage changes in the eastern Cantabrian Sea and their potential relationship to climate change. Estuar. Coast. Shelf Sci. 99: 108-120. http://dx.doi.org/10.1016/j.ecss.2011.12.027
  • Fricke A., Titlyanova T.V., Nugues M.M., et al. 2011. Depth-related variation in epiphytic communities growing on the brown alga Lobophora variegata in a Caribbean coral reef. Coral Reefs 30: 967-973. http://dx.doi.org/10.1007/s00338-011-0772-0
  • Galparsoro I., Borja A., Legorburu I., et al. 2010. Morphological characteristics of the Basque continental shelf (Bay of Biscay, northern Spain); their implications for Integrated Coastal Zone Management. Geomorphology 118: 314-329. http://dx.doi.org/10.1016/j.geomorph.2010.01.012
  • Giovannetti E., Montefalcone M., Morri C., et al. 2010. Early warning response of Posidonia oceanica epiphyte community to environmental alterations (Ligurian Sea, NW Mediterranean). Mar. Pollut. Bull. 60: 1031-1039. http://dx.doi.org/10.1016/j.marpolbul.2010.01.024 PMid:20189197
  • González M., Uriarte A., Fontán A., et al. 2004. Marine dynamics. In: Borja A., Collins M. (eds), Oceanography and Marine Environment of the Basque Country. Elsevier, Amsterdam, pp. 133-157. http://dx.doi.org/10.1016/S0422-9894(04)80044-8
  • Gorostiaga J.M. 1994. Growth and production of the red alga Gelidium sesquipedale off the Basque coast (northern Spain). Mar. Biol. 120: 311-322. http://dx.doi.org/10.1007/BF00349693
  • Gorostiaga J.M. 1995. Sublittoral seaweed vegetation in a very exposed shore on the Basque Coast (N. Spain). Bot. Mar. 38: 9-16. http://dx.doi.org/10.1515/botm.1995.38.1-6.9
  • Gorostiaga J.M., Santolaria A., Secilla A., et al. 1998. Sublittoral benthic vegetation of the eastern Basque coast (N. Spain): Structure and environmental factors. Bot. Mar. 41: 455-465. http://dx.doi.org/10.1515/botm.1998.41.1-6.455
  • Gross E.M., Feldbaum C., Graf A. 2003. Epiphyte biomass and elemental composition on submersed macrophytes in shallow eutrophic lakes. Hydrobiologia 506-509: 559-565. http://dx.doi.org/10.1023/B:HYDR.0000008538.68268.82
  • Guiry M.D., Guiry G.M. 2014. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway.
  • Karez R., Engelbert S., Sommer U. 2000. 'Co-consumption' and 'protective coating': two new proposed effects of epiphytes on their macroalgal hosts in mesograzer-epiphyte-host interactions. Mar. Ecol. Prog. Ser. 205: 85-93. http://dx.doi.org/10.3354/meps205085
  • Kersen P., Kotta J., Bucas M., et al. 2011. Epiphytes and associated fauna on the brown alga Fucus vesiculosus in the Baltic and the North Seas in relation to different abiotic and biotic variables. Mar. Ecol. 32: 87-95. http://dx.doi.org/10.1111/j.1439-0485.2010.00418.x
  • Kraufvelin P. 2007. Responses to nutrient enrichment, wave action and disturbance in rocky shore communities. Aquat. Bot. 87: 262-274. http://dx.doi.org/10.1016/j.aquabot.2007.06.011
  • Lavery P.S., Vanderklift M.A. 2002. A comparison of spatial and temporal patterns in epiphytic algal assemblages of the seagrasses Amphibolis griffithii and Posidonia coriacea. Mar. Ecol. Prog. Ser. 236: 99-112. http://dx.doi.org/10.3354/meps236099
  • Liria P., Garel E., Uriarte A. 2009. The effects of dredging operations on the hydrodynamics of an ebb tidal delta: Oka Estuary, northern Spain. Cont. Shelf Res. 29: 1983-1994. http://dx.doi.org/10.1016/j.csr.2009.01.014
  • Lu.ning K. 1990. Seaweeds. Their Environment, Biogeography and Ecophysiology. Wiley-Interscience Publication, New York, 527 pp.
  • Lutz M.L., Davis A.R., Minchinton T.E. 2010. Non-indigenous macroalga hosts different epiphytic assemblages to conspecific natives in southeast Australia. Mar. Biol. 157: 1095-1103. http://dx.doi.org/10.1007/s00227-010-1391-y
  • Martins G.M., Patarra R.F., Álvaro N.V., et al. 2013. Effects of coastal orientation and depth on the distribution of subtidal benthic assemblages. Mar. Ecol. 34: 289-297. http://dx.doi.org/10.1111/maec.12014
  • McHugh D.J. 1991. Worldwide distribution of commercial resources of seaweeds including Gelidium. Hydrobiologia 221: 19-29. http://dx.doi.org/10.1007/BF00028359
  • Michael T.S., Shin H.W., Hanna R., et al. 2008. A review of epiphyte community development: Surface interactions and settlement on seagrass. J. Environ. Biol. 24: 629-638.
  • Mu-oz J., Fotedar R. 2010. Epiphytism of Gracilaria cliftonii (Withell, Millar and Kraft) from Western Australia. J. Appl. Phycol. 22: 371-379. http://dx.doi.org/10.1007/s10811-009-9469-y
  • Mu-oz J., Cancino J.M., Molina M.X. 1991. Effect of encrusting bryozoans on the physiology of their algal substratum. J. Mar. Biol. Assoc. UK 7: 877-882.
  • Nishihara G.N., Terada R. 2010. Species richness of marine macrophytes is correlated to a wave exposure gradient. Phycol. Res. 58: 280-292. http://dx.doi.org/10.1111/j.1440-1835.2010.00587.x
  • Norderhaug K.M., Christie H., Andersen G.S., et al. 2012. Does the diversity of kelp forest macrofauna increase with wave exposure? J. Sea Res. 69: 36-42. http://dx.doi.org/10.1016/j.seares.2012.01.004
  • Norderhaug K.M., Christie H., Rinde E., et al. 2014. Importance of wave and current exposure to fauna communities in Laminaria hyperborea kelp forests. Mar. Ecol. Prog. Ser. 502: 295-301. http://dx.doi.org/10.3354/meps10754
  • Otero-Schmitt J., Pérez-Cirera J.L. 1996. Epiphytism on Cystoseira (Fucales, Phaeophyta) from the Atlantic Coast of Northwest Spain. Bot. Mar. 39: 445-465. http://dx.doi.org/10.1515/botm.1996.39.1-6.445
  • Pedersen M.F., Nejrup L.B., Fredriksen S., et al. 2012. Effects of wave exposure on population structure, demography, biomass and productivity of the kelp Laminaria hyperborean. Mar. Ecol. Prog. Ser. 451: 45-60. http://dx.doi.org/10.3354/meps09594
  • Peteiro C., Freire O. 2013. Epiphytism on blades of the edible kelps Undaria pinnatifida and Saccharina latissima farmed under different abiotic conditions. J. World Aquacult. Soc. 44(5): 706-715. http://dx.doi.org/10.1111/jwas.12065
  • Prado P., Alcoverro T., Martinez-Crego B., et al. 2007. Macrograzers strongly influence patterns of epiphytic assemblages in seagrass meadows. J. Exp. Mar. Biol. Ecol. 350: 130-143. http://dx.doi.org/10.1016/j.jembe.2007.05.033
  • Quintano E., Ganzedo U., Díez I., et al. 2013. Solar radiation (PAR and UVR) and water temperature in relation to biochemical performance of Gelidium corneum (Gelidiales, Rhodophyta) in subtidal bottoms off the Basque coast. J Sea Res. 83: 47-55. http://dx.doi.org/10.1016/j.seares.2013.05.008
  • Rico J.M., Fredriksen S. 1996. Effects of environmental factors on net photosynthesis and growth of intertidal species of the genus Gelidium (Gelidiaceae, Rhodophyta) in northern Spain. Sci. Mar. 60: 265-273.
  • Rindi F., Guiry M.D. 2004. Composition and spatio temporal variability of the epiphytic macroalgal assemblage of Fucus vesiculosus Linnaeus at Clare Island, Mayo, western Ireland. J. Exp. Mar. Biol. Ecol. 311: 233-252. http://dx.doi.org/10.1016/j.jembe.2004.05.009
  • Russell B.D., Elsdon T.S., Gillanders B.M., et al. 2005. Nutrients increase epiphyte loads: broad-scale observations and an experimental assessment. Mar. Biol. 147: 551-558. http://dx.doi.org/10.1007/s00227-005-1571-3
  • Sand-Jensen K. 1977. Effect of epiphytes on eelgrass photosynthesis. Aquat. Bot. 3: 55-63. http://dx.doi.org/10.1016/0304-3770(77)90004-3
  • Santos R. 1994. Frond dynamics of the commercial seaweed Gelidium sesquipedale: effects of size and of frond history. Mar. Ecol. Prog. Ser. 107: 295-305. http://dx.doi.org/10.3354/meps107295
  • Secilla A. 2009. La familia Ceramiaceae sensu lato en la costa de Bizkaia. Ph.D. Thesis, University of the Basque Country, 324 pp.
  • Tsirika A., Skoufas G., Haritonidis S. 2007. Seasonal and bathymetric variations of epiphytic macroflora on Posidonia oceanica (L.) Delile leaves in the National Marine Park of Zakynthos (Greece). Mar. Ecol. 28: 146-153. http://dx.doi.org/10.1111/j.1439-0485.2007.00170.x
  • Wahl M. 1989. Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar. Ecol. Prog. Ser. 58: 175-189. http://dx.doi.org/10.3354/meps058175