Unsupervised acquisition of domain aspect terms for Aspect Based Opinion Mining

  1. Aitor García Pablos
  2. Montse Cuadros
  3. German Rigau
Revista:
Procesamiento del lenguaje natural

ISSN: 1135-5948

Año de publicación: 2014

Número: 53

Páginas: 121-128

Tipo: Artículo

Otras publicaciones en: Procesamiento del lenguaje natural

Resumen

El análisis automático de la opinión, que usualmente recibe el nombre minería de opinión o análisis del sentimiento, ha cobrado una gran importancia durante la última década. La minería de opinión basada en aspectos se centra en detectar el sentimiento con respecto a “aspectos” de la entidad examinada (i.e. características o partes concretas evaluadas en una sentencia). De cara a detectar dichos aspectos se requiere una cierta información sobre el dominio o temática del contenido analizado, ya que el vocabulario varía de un dominio a otro. El objetivo de este trabajo es generar de manera automática una lista de aspectos del dominio partiendo de un set de textos sin etiquetar, de manera completamente no supervisada, como primer paso para el desarrollo de un sistema más completo.

Referencias bibliográficas

  • Blair-Goldensohn, S. 2008. Building a sentiment summarizer for local service reviews. WWW Workshop on NLP in the Information Explosion Era.
  • Fei, Geli, Bing Liu, Meichun Hsu, Malu Castellanos, and Riddhiman Ghosh. 2012. A Dictionary-Based Approach to Identi- fying Aspects Im-plied by Adjectives for Opinion Mining. 2(December 2012):309-318.
  • Ganu, Gayatree, N Elhadad, and A Marian. 2009. Beyond the Stars: Improving Rating Predictions using Review Text Con- tent. WebDB, (WebDB):1-6.
  • Hai, Zhen, Kuiyu Chang, and Gao Cong. 2012. One seed to find them all: mining opinion features via association. Proceedings of the 21st ACM international conference on Information and knowledge management, pages 255-264.
  • Hu, Minqing and Bing Liu. 2004. Mining opinion features in customer reviews. AAAI.
  • Liu, Bing. 2012. Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1):1-167.
  • Pang, Bo and Lillian Lee. 2008. Opinion mining and sentiment analysis. Foundations and trends in information retrieval, 2(1-2):1-135.
  • Pontiki, Maria, Dimitrios Galanis, John Pavlopoulos, Harris Papageorgiou, Ion Androutsopoulos, and Suresh Manandhar. 2014. Semeval-2014 task 4: Aspect based sentiment analysis. Proceedings of the International Workshop on Semantic Evaluation (SemEval).
  • Popescu, AM and Oren Etzioni. 2005. Extracting product features and opinions from reviews. Natural language processing and text mining, (October):339-346.
  • Qiu, Guang, Bing Liu, Jiajun Bu, and Chun Chen. 2009. Expanding Domain Sentiment Lexicon through Double Propagation. IJCAI.
  • Qiu, Guang, Bing Liu, Jiajun Bu, and Chun Chen. 2011. Opinion word expansion and target extraction through double propagation. Computational linguistics, (July 2010).
  • Wu, Yuanbin, Qi Zhang, Xuanjing Huang, and Lide Wu. 2009. Phrase dependency parsing for opinion mining. In Proceed- ings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 3-Volume 3, pages 1533-1541. Association for Computational Linguistics.
  • Zhang, L, Bing Liu, SH Lim, and E O'Brien-Strain. 2010. Extracting and ranking product features in opinion documents. Proceedings of the 23rd International Conference on Computational Linguistics, (August):1462-1470.
  • Zhang, Lei and Bing Liu. 2014. Aspect and Entity Extraction for Opinion Mining. Data Mining and Knowledge Discovery for Big Data.
  • Zhuang, Li, F Jing, and XY Zhu. 2006. Movie review mining and summarization. Proceedings of the 15th ACM international conference on Information and knowledge management, pages 43-50.