Influence of the biomechanical variables of the gait cycle in running economy
- Santos Concejero, Jordan
- Granados Domínguez, Cristina
- Irazusta Astiazaran, Jon
- Bidaurrazaga López de Letona, Iraia
- Zabala Lili, Jon
- Tam, N
- Gil Orozko, Susana María
ISSN: 1885-3137
Datum der Publikation: 2014
Ausgabe: 10
Nummer: 36
Seiten: 95-108
Art: Artikel
Andere Publikationen in: RICYDE. Revista Internacional de Ciencias del Deporte
Zusammenfassung
El objetivo de este estudio fue el investigar las relaciones entre diferentes variables biomecánicas y la economía de carrera (RE). Once atletas populares (RR) y 14 atletas altamente entrenados (WT) completaron estadios de 4 min en tapiz rodante a diferentes velocidades. Durante el test, el tiempo de contacto (tc) y de vuelo (tsw), la longitud, frecuencia y ángulo de zancada y la duración de las diferentes sub-fases del tiempo de contacto se calcularon usando un sistema óptico. Se midió el VO2 para calcular la RE. Los atletas WT fueron más económicos que los RR y presentaron menores tc, mayores tsw, zancadas más largas, frecuencias más bajas y ángulos mayores (P<0.05). Además, los atletas WT experimentaron la sub-fase propulsiva más tarde que los RR (P<0.05). La RE estuvo positivamente relacionada con el tc, la frecuencia de zancada y el ritmo de 10 km, mientras que estuvo negativamente relacionada con el tsw, longitud y ángulo de zancada y la sub-fase propulsiva. Estos resultados sugieren que una biomecánica caracterizada por zancadas más largas, ángulos de zancada y tsw mayores, menores frecuencias y tc, y sub-fases propulsivas más tardías pueden favorecer un uso energético más eficiente.
Bibliographische Referenzen
- Anderson, T. (1996). Biomechanics and running economy. Sports Medicine, 22, 76-89. http://dx.doi.org/10.2165/00007256-199622020-00003
- Åstrand, P.O.; Rodahl, K.; Dahl, H., & Strommer, S. (1986). Textbook of work physiology: physiological bases of exercise. New York: McGraw Hill.
- Bergh, U.; Sjödin, B.; Forsberg, A., & Svedenhag, J. (1991). The relationship between body mass and oxygen uptake during running in humans. Medicine & Science in Sports & Exercise, 23, 205-211. http://dx.doi.org/10.1249/00005768-199102000-00010
- Bosco, C.; Montanari, G.; Ribacchi, R.; Giovenali, P.; Latteri, F.; Lachelli, G.; Faina, M.; Colli, R.; Dal Monte, A., & La Rosa, M. (1987). Relationship between the efficiency of muscular work during jumping and the energetic. European Journal of Applied Physiology and Occupational Physiology, 56, 138-143.http://dx.doi.org/10.1007/BF00640636
- Bransford, D.R., & Howley, E.T. (1977). Oxygen cost of running in trained and untrained men and women. Medicine and Science in Sport, 9, 41-44.
- Cavanagh, P.R., & Williams, K.R. (1982). The effect of stride length variation on oxygen uptake during distance running. Medicine & Science in Sports & Exercise, 14, 30-35. http://dx.doi.org/10.1249/00005768-198201000- 00006
- Chapman, R.F.; Laymon, A.S.; Wilhite, D.P.; McKenzie, J.M.; Tanner, D.A., & Stager, J.M. (2012). Ground contact time as an indicator of metabolic cost in elite distance runners. Medicine & Science in Sports & Exercise, 4, 917-92. http://dx.doi.org/10.1249/MSS.0b013e3182400520
- Cheng, B.; Kuipers, H.; Snyder, A.C.; Keizer, H.A.; Jeukendrup, A., & Hesselink, M. (1992). A new approach for the determination of ventilatory and lactate thresholds. International Journal of Sports Medicine, 13, 518-522. http://dx.doi.org/10.1055/s-2007-1021309
- Chumanov, E.S.; Heiderscheit, B.C., & Thelen, D.G. (2011). Hamstring musculotendon dynamics during stance and swing phases of high-speed running. Medicine & Science in Sports & Exercise, 43, 525-532. http://dx.doi.org/10.1249/MSS.0b013e3181f23fe8
- Cohen, J. Statistical power analysis for the behavioral sciences. Hillsdale: Lawrence Erlbaum Associates, 1998.
- Conley, D.L., & Krahenbuhl, G.S. (1980). Running economy and distance running performance of highly trained athletes. Medicine & Science in Sports & Exercise, 12, 357-360.
- Daniels, J., & Daniels, N. (1982). Running economy of elite male and elite female runners. Medicine & Science in Sports & Exercise, 24, 483-489.
- Debaere, S.; Jonkers, I., & Delecluse, C. (2013). The contribution of step characteristics to sprint running performance in high-level male and female athletes. Journal of Strength & Conditioning Research, 27, 116-124. http://dx.doi.org/10.1519/JSC.0b013e31825183ef
- Di Pampero, P.E.; Atchou, G.; Brückner, J.C., & Moia, C. (1986). The energetics of endurance running. European Journal of Applied Physiology and Occupational Physiology, 55, 259-266. http://dx.doi.org/10.1007/BF02343797
- Duggan, S.A., & Bhat, K.P. (2005). Biomechanics and Analysis of Running Gait. Physical Medicine & Rehabilitation Clinics of North America, 16, 603-621. http://dx.doi.org/10.1016/j.pmr.2005.02.007
- Foster, C., & Lucia, A. (2007). Running economy: the forgotten factor in elite performance. Sports Medicine, 37, 316-319. http://dx.doi.org/10.2165/ 00007256-200737040-00011
- Gregor, R.J., & Kirkendall, D. (1978). Performance efficiency of world class female marathon runners. In E. Asmussen & K. Jörgensen (Eds.), Biomechanics VI-B. (pp. 40-45). Baltimore: University Park Press.
- Helgerud, J.; Engen, L.C.; Wisloff, U., & Hoff, J. (2001). Aerobic endurance training improves soccer performance. Medicine & Science in Sports & Exercise, 33, 1925-1931. http://dx.doi.org/10.1097/00005768-200111000- 00019
- Helgerud, J.; Støren, O., & Hoff, J. (2010). Are there differences in running economy at different speeds for well-trained distance runners? European Journal of Applied Physiology, 108, 1099-1105. http://dx.doi.org/10.1007/s00421-009-1218-z
- Hogberg, P. (1952). Length of stride, stride frequency, "flight" period and maximum distance between the feet during running with different speeds. Arbeitsphysiologie, 14, 431-436.
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M., & Hanin J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41, 3-13. http://dx.doi.org/10. 1249/MSS.0b013e31818cb278
- Joyner, M.J. (1991). Modeling: optimal marathon performance on the basis of physiological factors. Journal of Applied Physiology, 70, 683-687.
- Kaneko, M.; Ito, A.; Fuchimoto, T.; Shishikura, Y., & Toyooka J. (1985). Influence of running speed of the mechanical efficiency of sprinters and distance runners. In D.A.Winter, R.W. Norman, R.P. Wells, C.K. Heyes & A.E. Patla (Eds.), Biomechanics IX-B (pp. 307-312). Champaign: Human Kinetics.
- Karp, J.R. (2010). Strength Training For Distance Running: A Scientific Perspective. Strength and Conditioning Journal, 32, 83-86. http://dx.doi.org/10. 1519/SSC.0b013e3181df195b
- Krahenbuhl, G.S., & Pangrazi, R.P. (1983). Characteristics associated with running performance in young boys. Medicine & Science in Sports & Exercise, 15, 486-490. http://dx.doi.org/10.1249/00005768-198315060-00008
- Kram, R., & Taylor, C.R. (1990). Energetics of running: a new perspective. Nature, 346, 265-267. http://dx.doi.org/10.1038/346265a0
- Kyröläinen, H.; Belli, A., & Komi, P.V. (2001). Biomechanical factors affecting running economy. Medicine & Science in Sports & Exercise, 33, 1330-1337. http://dx.doi.org/10.1097/00005768- 200108000-00014
- Levine, B.D. (2008). VO2max: what do we know, and what do we still need to know? Journal of Physiology, 586, 25-34. http://dx.doi.org/10.1113/jphysiol. 2007.147629
- Lucia, A.; Esteve-Lanao, J.; Oliván, J.; Gómez-Gallego, F.; San Juan, A.F.; Santiago, C.; Pérez, M.; Chamorro-Viña, C., & Foster, C. (2006). Physiological characteristics of the best Eritrean runners-exceptional running economy. Applied Physiology, Nutrition and Metabolism, 31, 530-540. http://dx.doi.org/10.1139/h06-029
- Maldonado, S.; Mujika, I., & Padilla, S. (2002). Influence of body mass and height on the energy cost of running in highly trained middle- and long-distance runners. International Journal of Sports Medicine, 23, 268-272. http://dx.doi.org/10.1055/s-2002-29083
- Maldonado-Martín, S.; Mujika, I., & Padilla, S. (2004). Physiological variables to use in the gender comparison in highly trained runners. Journal of Sports Medicine & Physical Fitness, 44, 8-14.
- Mayhew, J.L. (1997). Oxygen cost and energy expenditure of running in trained runners. British Journal of Sports Medicine, 11, 116-121. http://dx.doi.org/10.1136/bjsm.11.3.116
- Novacheck, T.F. (1998). Review paper: the biomechanics of running. Gait & Posture, 7, 77-95. http://dx.doi.org/10.1016/S0966-6362(97)00038-6
- Nummela, A.; Keränen, T., & Mikkelsson, L. (2007). Factors related to top running speed and economy. International Journal of Sports Medicine, 28, 655-661. http://dx.doi.org/10.1055/s-2007-964896
- Pate, R.R.; Macera, C.A.; Bailey, S.P.; Bartoli, W.P., & Powell, K.E. (1992). Physiological, anthropometric, and training correlates of running economy. Medicine & Science in Sports & Exercise, 24, 1128-1133.http://dx.doi.org/10.1249/00005768-199210000-00010
- Saunders, P.U.; Pyne, D.B.; Telford, R.D., & Hawley, J.A. (2004). Factors affecting running economy in trained distance runners. Sports Medicine, 34, 456-485. http://dx.doi.org/10.2165/00007256-200434070-00005
- Tartaruga, M.P.; Brisswalter, J.; Peyré-Tartaruga, L.A.; Avila, A.O.; Alberton, C.L.; Coertjens, M.; Cadore, E.L.; Tiggemann, C.L.; Silva, E.M., & Kruel LF. (2012). The relationship between running economy and biomechanical variables in distance runners. Research Quarterly for Exercise and Sport. 3, 367-375.
- Weyand, P.G.; Sternlight, D.B.; Bellizzi, M.J., & Wright, S. (2000). Faster top running speeds are achieved with greater ground forces not more rapid leg movements. Journal of Applied Physiology, 89, 1991-1999.
- Yoshida, T. (1984). Effect of exercise duration during incremental exercise on the determination of anaerobic threshold and the onset of blood lactate accumulation. European Journal of Applied Physiology & Occupational Physiology, 53, 196-199. http://dx.doi.org/10.1007/BF00776589
- Yuhasz, M.S. (1974). Physical fitness Manual. London: University of Western Ontario.