Determination of Features for a Machine Learning Approach to Pronominal Anaphora Resolution in Basque

  1. Arregi Uriarte, Olatz
  2. Ceberio Berger, Klara
  3. Díaz de Ilarraza Sánchez, Arantza
  4. Goenaga, Igor
  5. Sierra Araujo, Basilio
  6. Zelaia Jauregi, Ana
Revista:
Procesamiento del lenguaje natural

ISSN: 1135-5948

Año de publicación: 2010

Número: 45

Páginas: 291-296

Tipo: Artículo

Otras publicaciones en: Procesamiento del lenguaje natural

Resumen

En este trabajo presentamos una primera aproximación basada en el aprendizaje automático para resolver la anáfora pronominal en euskara. Asimismo, determinamos las características más relevantes para esta tarea.

Referencias bibliográficas

  • Aduriz, I., Aranzabe, M. J., Arriola, J.M., D´ıaz de Ilarraza, A., Gojenola, K., Oronoz, M., Uria, L.: A Cascaded Syntactic Analyser for Basque. CICLing 2004. Seoul, Korea (2004)
  • Aduriz, I., Aranzabe, M. J., Arriola, J.M., Atutxa, A., D´ıaz de Ilarraza, A., Ezeiza, N., Gojenola, K., Oronoz, M., Soroa, A., and Urizar, R.:Methodology and steps towards the construction of EPEC, a corpus of written Basque tagged at morphological and syntactic levels for the automatic processing. Language and Computers, Corpus Linguistics Around the World. Edited by Andrew Wilson, Dawn Archer, Paul Rayson, pp. 1 – 15(15). Rodopi, Netherlands (2006)
  • Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P.,Witten, I. H.: The WEKA Data Mining Software: An Update; SIGKDD Explorations, Volume 11, Issue 1 (2009)
  • Kira, K., Rendell, L. A.: A Practical Approach to Feature Selection. Ninth International Workshop on Machine Learning, pp. 249 – 256, (1992)
  • Mitkov, R.: Anaphora resolution. London: Longman, (2002)
  • Moosavi, N. S., and Ghassem-Sani, G.: Using Machine Learning Approaches for Persian Pronoun Resolution. Workshop on Corpus-Based Approaches to Coreference Resolution in Romance Languages. CBA-08, (2008)
  • Moosavi, N. S., and Ghassem-Sani, G.: A Ranking Approach to Persian Pronoun Resolution. Advances in Computational Linguistics. Research in Computing Science 41, pp. 169 – 180, (2009)
  • Nguy and Zabokrtsk´y.: Rule-based Approach to Pronominal Anaphora Resolution Method Using the Prague Dependency Treebank 2.0 Data. . Proceedings of DAARC 2007 (6th Discourse Anaphora and Anaphor Resolution Colloquium), (2007)
  • Palomar, M., Civit, M., D´ıaz, A., Moreno, L., Bisbal, E., Aranzabe, M. J., Ageno, A., Mart´ı, M.A. and Navarro, B.: 3LB: Construcci´on de una base de datos de ´arboles sint´actico-sem´anticos para el catal ´an, euskera y espa˜nol. XX. Congreso SEPLN, Barcelona, (2004)
  • Soon, W. M., Ng, H. T., and Lim, D. C. Y.: A Machine Learning Approach to Coreference Resolution of Noun Phrases. Computational Linguistics, 27(4):521 – 544, (2001)
  • Versley, Y.: A Constraint-based Approach to Noum Phrase Coreference Resolution in German Newspaper Text. In Konferenz zur Verarbeitung Nat¨urlicher Sprache KONVENS, (2006)