Classification of finite groups with many minimal subgroups and with the number of conjugacy classes of G/S(G) equal to 8

  1. Vera López, Antonio
  2. Arregi Lizarraga, Jesús María
  3. Vera López, Francisco José
Revista:
Collectanea mathematica

ISSN: 0010-0757

Año de publicación: 1990

Volumen: 41

Fascículo: 3

Páginas: 243-279

Tipo: Artículo

Otras publicaciones en: Collectanea mathematica

Resumen

In this paper we classify all the finite groups satisfying r(G/S(G))=8 and ß(G)=r(G) - a(G) - 1, where r(G) is the number of conjugacy classes of G, ß(G) is the number of minimal normal subgroups of G, S(G) the socle of G and a(G) the number of conjugacy classes of G out of S(G). These results are a contribution to the general problem of the classification of the finite groups according to the number of conjugacy classes.