Revisión de investigaciones sobre la enseñanza-aprendizaje de los conceptos "cantidad de sustancia y mol"

  1. Furió Más, Carles
  2. Guisasola Aranzábal, Jenaro
  3. Azcona, R.
Revue:
Enseñanza de las ciencias: revista de investigación y experiencias didácticas

ISSN: 0212-4521 2174-6486

Année de publication: 2002

Volumen: 20

Número: 2

Pages: 229-242

Type: Article

DOI: 10.5565/REV/ENSCIENCIAS.3967 DIALNET GOOGLE SCHOLAR lock_openDDD editor

D'autres publications dans: Enseñanza de las ciencias: revista de investigación y experiencias didácticas

Objectifs de Développement Durable

Résumé

. El objeto de este trabajo es revisar la situación actual de las investigaciones didácticas realizadas en el campo de la química sobre los conceptos de cantidad de sustancia y de mol. La revisión está organizada en cuatro apartados: dificultades de aprendizaje, dificultades de enseñanza, controversias sobre la magnitud «cantidad de sustancia» y estrategias de enseñanza.

Références bibliographiques

  • AINLEY, D. (1991). Mole catchers? Education in Chemistry, 28(18), pp. 18-19.
  • ALEXANDER, M.D., EWING, G.J. y ABBOT, F.T. (1984). Analogies that indicate the size of atoms and molecules and the magnitude of Avogadro’s number. Journal of Chemical Education, 61(7), p. 591.
  • ALLSOP, R.T. (1977). The place and importance of the mole in school chemistry courses. Physics Education, 12, pp. 285- 288.
  • ARCE DE SANABIA, J. (1993). Relative atomic mass and the mole: a concrete analogy to help students understand these abstract concepts. Journal of Chemical Education, 70(3), pp. 233-234.
  • AZCONA, R. (1997). Origen y evolución de los conceptos de cantidad de sustancia y mol. Implicaciones en la enseñanza de la química. XII Cursos sobre aspectos didácticos en la enseñanza secundaria: química. Colección Educación Abierta ICE: Zaragoza.
  • AZCONA, R. (2001). Análisis crítico de la enseñanza-aprendizaje de los conceptos de cantidad de sustancia y de mol. Una alternativa didáctica basada en el aprendizaje como investigación, en Investigaciones en didáctica de las ciencias experimentales basadas en el modelo de enseñanza-aprendizaje como investigación orientada. Guisasola, J. y Pérez de Eulate, L. (eds.). Bilbao: Universidad del País Vasco.
  • BENT, H.A. (1985). Should the mole concept be X-rated? Journal of Chemical Education, 62(1), p. 59.
  • BENT, H.A. (1987). Should we «teach the mole»? Journal of Chemical Education, 64(3), p. 192.
  • BEN-ZVI, R., EYLON, B. y SILBERSTEIN, J. (1988). Theories, principles and laws. Education in Chemistry, 25(3), pp. 89- 92.
  • BIEBER, T. (1961). Letter to the Editor. Journal of Chemical Education, 38(11), p. 254.
  • BONNEAU, M.C. (1994). The mole buck. Journal of Chemical Education, 71(4), p. 286.
  • BOUMA, J. (1986). Gas cans and gas cubes: visualizing Avogadro’s law. Journal of Chemical Education, 63(7), pp. 586-587.
  • BROWN, B.S. (1991). A mole mnemonic. Journal of Chemical Education, 68(12), p. 1039.
  • CAAMAÑO, A. (1983). La gramática del lenguaje científico (II). Magnitudes físicas y químicas. Cuadernos de Pedagogía, 98, pp. 64-67.
  • CAAMAÑO, A., MAYOS, C., MAESTRE, G. y VENTURA, T. (1983). Consideraciones sobre algunos errores conceptuales en el aprendizaje de la química en el bachillerato. Enseñanza de las Ciencias, 1(3), pp. 198-200.
  • CERVELLATI, R., MONTUSCHI, A., PERUGINI, D., GRIMELLINI-TOMASINI, N. y PECORINI BALANDI, B., 1982. Investigation of secondary school students’ understanding of the mole concept in Italy. Journal of Chemical Education, 59(10), pp. 852-856.
  • CHAMBERLAIN, D., RITCHIE, A. y STRATTON, J. (1991). El concepto de mol. Guía del profesor. TV Ontario. Madrid: International Education and Training Enterprises.
  • CHIAPPETTA, E.L. y MCBRIDE, J.W. (1980). Exploring the effects of general remediation on ninth-graders’ achievement of the mole concept. Science Education, 64(5), pp. 609-614
  • CLAYTON, D.G. (1981). The variable mole and moleage. Education in Chemistry, 18(6), p. 164.
  • CLAYTON, D. (1982). The elusive S.I. mole. Education in Chemistry, 19(4), p. 102.
  • CLAYTON, D.G. (1983). The mole. Education in Chemistry, 20(2), p. 36.
  • COHEN, I. (1961a). Letter to the Editor. Journal of Chemical Education, 38(11), p. 554.
  • COHEN, I. (1961b). Moles and equivalents: quantities of matter. Journal of Chemical Education, 38(11), pp. 555-556.
  • COPLEY, G.N. (1961). The mole in Quantitative Chemistry. Journal of Chemical Education, 37(11), pp. 551-553.
  • DE BERG, K.C. (1986a). Fundamental calculations with the mole. The Australian Science Teachers Journal, 32(1), pp. 29-36.
  • DE BERG, K.C. (1986b). Text book analysis of the mole and its underlying concepts. A teaching-learning perspective. The Australian Science Teachers Journal, 32(4), pp. 33-43.
  • DE LORENZO, R. (1980). Mole fraction analogies. Journal of Chemical Education, 57(10), p. 733.
  • DIERKS, W. (1981). Teaching the mole. European Journal of Science Education, 3(2), pp. 145-148.
  • DOMINIC, S. (1996). What’s a mole for? Journal of Chemical Education, 73(4), p. 309.
  • DOIRI, Y.J. y HAMEIRI, M. (1998). The «Mole Environment» studyware: applying multidimensional analysis to quantitative chemistry problems. International Journal of Science Education, 20(3), pp. 317-333.
  • DRIVER, R. (1986). Psicología cognoscitiva y esquemas conceptuales de los alumnos. Enseñanza de las Ciencias, 4(1), pp. 3-15.
  • DUNCAN, I.M. y JOHNSTONE, A.H. (1973). The mole concept. Education in Chemistry, 10, pp. 213-214.
  • ELSWORTH, J.F. (1990). Concentrating on change. Education in Chemistry, 27(3), p. 100
  • FELTY, W.L. (1985). Gram formula weights and fruit salad. Journal of Chemical Education, 62(1), p. 61.
  • FERNÁNDEZ, M.L. (1989). Errores en el concepto de mol. Apuntes de Educación. Naturaleza y Matemáticas, 35, pp. 6-8.
  • FORBES, R.G. (1976). A fundamental proposal concerning the mole. Education in Chemistry, 13, p. 92.
  • FORBES, R.G. (1977). ...and interpreting it. Letter to the Editor. Education in Chemistry, 14, p. 124.
  • FORBES, R.G. (1978a). More confusion over the Avogadro constant. Physics Education, 13, pp. 5-6.
  • FORBES, R.G. (1978b). Amount of substance: an alternative proposal. Physics Education, 13, pp. 269-272.
  • FORBES, R.G. (1982). The seventh S.I. quantity. Education in Chemistry, 19(4), p. 102.
  • FORBES, R.G. (1991). The physicists’ amount too. The Science School Review, 73(263), p.133.
  • FORTMAN, J.J. (1993). Pictorical analogies IV: Relative atomic weights. Journal of Chemical Education, 70(3), pp. 235-236.
  • FORTMAN, J.J. (1994). Stoichiometry calculations. Journal of Chemical Education, 71(7), pp. 571-572.
  • FOY, J.R. (1961). Letter to the Editor. Journal of Chemical Education, 38(11), p. 554.
  • FRAZER, M.J. y SERVANT, D. (1986a). Aspects of stoichiometry titration calculations. Education in Chemistry, 23(2), pp. 54-56.
  • FRAZER, M.J. y SERVANT, D. (1986b). Aspects of stoichiometry. A wider view? Education in Chemistry, 23(5), pp. 138-140.
  • FRAZER, M.J y SERVANT, D.M. (1987). Aspects of stoichiometry-where do students go wrong? Education in Chemistry, 24(3), pp. 73-75.
  • FRIEDEL, A., GABEL, D.L. y SAMUEL, J. (1990). Using analogs for Chemistry problem solving: does it increase understanding? School Science and Mathematics, 90(8), pp. 674-682.
  • FULKROD, J.E. (1981). How big is Avogadro’s number (or how small are atoms, molecules and ions)? Journal of Chemical Education, 58(6), p. 508.
  • FURIÓ, C., AZCONA, R., GUISASOLA, G. y MUJIKA, E. (1993). Concepciones de los estudiantes sobre una magnitud «olvidada» en la enseñanza de la química: la cantidad de sustancia. Enseñanza de las Ciencias, 11(2), pp. 107-114.
  • FURIÓ, C., AZCONA, R. y GUISASOLA, J. (1999). Dificultades conceptuales y epistemológicas del profesorado en la enseñanza de los conceptos de cantidad de sustancia y de mol. Enseñanza de las Ciencias, 17(3), pp. 359-376.
  • GABEL, D.L. y BUNCE, D.M. (1994). Handbook of research on science teaching and learning. A Project of the National Science Teachers Association. Research on problem solving: Chemistry. Nueva York: MacMillan Publishing Company
  • GABEL, D. y SHERWOOD, R.D. (1984). Analyzing difficulties with mole-concept task by using familiar analog tasks. Journal of Research in Science Teaching, 21(8), pp. 843- 851.
  • GAGNÉ, R.M. (1962). The acquisition of knowledge. Psychological Review, 69(4), pp. 355-365.
  • GARCÍA, J.P., PIZARRO, A., PERERA, F., MARTÍN, M. MYORDF y BACAS, P. (1990). Ideas de los alumnos acerca del mol. Estudio curricular. Enseñanza de las Ciencias, 8(2), pp. 111-119.
  • GOODSTEIN, M. y HOWE, A. (1978). The use of concrete methods in secondary chemistry instruction. Journal of Research in Science Teaching, 15(5), pp. 361-366.
  • GORIN, G. (1982). «Chemical amount» or «Chemiance»: proposed names for the quantity measured in mole units. Journal of Chemical Education, 59(6), p. 508.
  • GORIN, G. (1983). What do we measure in moles? Journal of Chemical Education, 60(10), p. 782.
  • GORIN, G. (1984). The unit gram/mole and its use in the description of molar mass. Journal of Chemical Education, 61(12), p. 1045.
  • GORIN, G. (1985). The definition and symbols for the quantity called «molarity» or «concentration» and for the S.I. units of this quantity. Journal of Chemical Education, 62(9), pp. 741.
  • GORIN, G. (1987). Should we «teach the mole»? Journal of Chemical Education, 64(3), p. 192.
  • GORIN, G. (1994). Mole and chemical amount. A discussion of the fundamental measurements of Chemistry. Journal of Chemical Education, 71(2), pp. 114-116.
  • GOWER, D.M., DANIELS, D.J. y LLOYD, G. (1977). The mole concept. The School Science Review, 58(205), pp. 658- 676.
  • GRIFFITHS, A.K., KASS, H. y CORNISH, A.G. (1983). Validation of a learning hierarchy for the mole concept. Journal of Research in Science Teaching, 20(7), pp. 639- 654.
  • GRIFFITHS, A.K., THOMEY, K., COOKE, B. y NORMORE, G. (1988). Remediation of student-specific misconceptions relating to three science concepts. Journal of Research in Science Teaching, 25(9), pp. 709-719.
  • GUGGENHEIM, E.A. (1961). The mole and related quantities. Journal of Chemical Education, 30(2), pp. 86-87.
  • HAWTHORNE, R.M. (1973). The mole and Avogadro’s number. Journal of Chemical Education, 50(4), pp. 282-284.
  • HENSON, R. y STUMBLES, A. (1979). Modern mathematics and the mole. Education in Chemistry, 16(1), pp. 10-11.
  • HERRON, J.D. (1975). Piaget for chemists. Journal of Chemical Education, 52(3), pp. 146-150.
  • HIERREZUELO, J. y MONTERO, A. (1991). La ciencia de los alumnos: su utilización en la didáctica de la física y química. Vélez-Málaga: Elzevi.
  • HOPPÉ, J. (1990). The mole digs deeper... Education in Chemistry, 27(5), p. 129.
  • HOPPÉ, J. (1991). Chemical amount or chemount. The Science School Review, 73(263), pp. 132-133.
  • HOYT, W. (1992). A mole of salt crystals–or how big is the Avogadro’s number? Journal of Chemical Education, 69(6), p. 496.
  • HUDSON, M.J. (1976). Introducing the mole. Education in Chemistry, 13(4), pp. 110-114.
  • IZQUIERDO, M. (1999). La emergencia de la explicación cuantitativa en química. VII Congreso de la Sociedad Española de Historia de las Ciencias y de las Técnicas. Estudios de Historia das Ciencias edas Técnicas. Pontevedra: Diputación Provincial. Servicio de Publicaciones.
  • JOHNSTONE, A.H. y EL-BANNA, H. (1986). Capacities, demands and processes–a predictive model for science education. Education in Chemistry, 23, pp. 80-84.
  • KOHMAN, T.P. (1987). Molar and equivalent amounts and concentrations. Journal of Chemical Education, 64(3), p. 246.
  • KOLB, D. (1978). The mole. Journal of Chemical Education. 55(1), pp. 728-732.
  • KRISHNAN, S.R. y HOWE, A.C. (1994). The mole concept developing an instrument to assess conceptual understanding. Journal of Chemical Education, 71(8), pp. 653-655.
  • LAST, A.M. y WEBB, M.J. (1993). Using monetary analogies to teach average atomic mass. Journal of Chemical Education, 70(3), pp. 234-235.
  • LAZONBY, J.N., MORRIS, J.E. y WADDINGTON, D.J. (1982). The muddlesome mole. Education in Chemistry, 19(4), pp. 109-111.
  • LAZONBY, J.N., MORRIS, J.E. y WADDINGTON, D.J. (1985). The mole: questioning format can make a difference. Journal of Chemical Education, 62(1), pp. 60-61.
  • LEE, R.E. (1982). The constant mole. Education in Chemistry, 19(1), pp. 6-7.
  • LEE, S. (1961). A redefinition of «mole». Journal of Chemical Education, 38(11), pp. 549-551.
  • LLORENS, J.A. (1991). Comenzando a aprender química. Ideas para el diseño curricular. Madrid: Aprendizaje-Visor.
  • MACDONALD, J.J. (1984). The mole: how should it be taught? The School Science Review, 65(232), pp. 486-497.
  • MASSON, M.R. (1993). ...or not to be. Letter to the Editor. Education in Chemistry, 30(1), p. 11.
  • MCCULLOUGH, T. (1990). Avogadro’s number, moles and molecules. Journal of Chemical Education, 67(9), p. 783.
  • MCGLASHAN, M.L. (1977). Amount of substance and the mole. Physics Education, 12, pp. 276-278.
  • MCMANUS, F.R. (1982). Amount of substance. Education in Chemistry, 19(1), p. 7.
  • MCMANUS, F.R. (1983). The abstract mole. Education in Chemistry, 20(1), p. 6.
  • MERLO, C. y TURNER, K. (1993). A mole of M and M’s. Journal of Chemical Education, 70(6), p. 453.
  • MILLS, I.M. (1989). The choice of names and symbols for quantities in Chemistry. Journal of Chemical Education, 66(11), pp. 887-889.
  • MILLS, I.M. (1990). ... and deeper. Education in Chemistry, 27(5), p. 129.
  • MILLS, I.M., CVITAS, T., HOMANN, K, KALLAY, N. y KUCHITSU, K. (1993). IUPAC Quantities, units and symbols in physical chemistry. Oxford: Blackwell.
  • MYERS, R.T. (1989). Moles, pennies and nickels. Journal of Chemical Education, 66(3), p. 249.
  • NELSON, P.G. (1989). Stoichiometry. Education in Chemistry, 26(1), p. 8.
  • NELSON, P.G. (1991). The elusive mole. Education in Chemistry, 28(4), pp. 103-104.
  • NELSON. P.G. (1994). Introducing ...atoms and molecules. Education in Chemistry, 31(1), pp. 20-21.
  • NIAZ, M. (1985). Evaluation of formal operational reasoning by Venezuelan freshmen students. Research in Science and Technological Education, 3(1), pp. 43-50.
  • NIAZ, M. (1987). Estilo cognoscitivo y su importancia para la enseñanza de la ciencia. Enseñanza de las Ciencias, 5(2), pp. 97-104.
  • NIAZ, M. (1988). The information-processing demand of chemistry problems and its relation to Pascual-Leone’s functional M-capacity. International Journal of Science Education, 10(2), pp. 231-238.
  • NIAZ, M. (1989). Relation between Pascual-Leone’s structural and functional M-space and its effect on problem solving in Chemistry. International Journal of Science Education, 11(1), pp. 93-99.
  • NOVICK, S. y MENIS, J. (1976). A Study of student perceptions of the mole concept. Journal of Chemical Education, 53(11), pp. 720-722.
  • PACKER, J.E. (1988). Difficulties with stoichiometry. Education in Chemistry, 25(3), pp. 92-95.
  • PASCUAL-LEONE, J. y GOODMAN, D. (1979). Intelligence and experience. Instructional Science, 8, pp. 301-367.
  • POSZOKIM, P.S., WAZORICK, J.W., TIEMPETPALSAL, P. y POSZOKIM, J.A. (1986). Analogies for Avogadro’s number. Journal of Chemical Education, 63(2), pp. 125-126.
  • RAMETTE, R.W. (1988). The mole concept is useful. Journal of Chemical Education, 65(4), p. 376.
  • RETHERFORD, K.L. (1978). Avogadro’s number. Journal of Chemical Education, 55(5), p. 334.
  • ROCHA-FILHO, R.C. (1990). A proposition about the quantity of which mole is the S.I. unit. Journal of Chemical Education, 67(2), pp. 139-140.
  • ROWELL, J.A. y DAWSON, C.J. (1980). Mountain or mole hill: can cognitive psychology reduce the dimensions of conceptual problems in classroom practice? Science Education, 64(5), pp. 693-708.
  • SCHMIDT, H.J. (1990). Secondary School students’ strategies in stoichiometry. International Journal of Science Education, 12(4), pp. 457-471.
  • SCHMIDT, H.J. (1994). Stoichiometry problem solving in high school Chemistry. International Journal of Science Education, 16(2), pp. 191-200.
  • SHAYER, M. y ADEY, P. (1984). La ciencia de enseñar ciencias. Madrid: Narcea.
  • SMITH, C.G. (1984). The abstract mole. Education in Chemistry, 21(4), p. 109.
  • SPURGIN, B. (1992). Amount of substance. The School Science Review, 73(265), pp. 151-152.
  • STAVER, J.R. y LUMPE, A.T. (1993). A content analysis of the presentation of the mole conception in Chemistry texbooks. Journal of Research in Science Teaching, 30(4), pp. 321- 337.
  • STAVER, J.R. y LUMPE, A.T. (1995). Two Investigations of students» understanding of the mole concept and its use in problem solving. Journal of Research in Science Teaching, 32(2), pp. 177-193.
  • STEINER, R.P. (1986). Teaching stoichiometry. Journal of Chemical Education, 63(12), p. 1048.
  • STRÖMDAHL, H., TULBERG, A. y LYBECK, L. (1994). The qualitatively different conceptions of 1 mol. International Journal of Science Education, 16(1), pp. 17-26.
  • TANNENBAUM, I.R. (1990). How large is a mole? Journal of Chemical Education, 67(6), p. 481.
  • TEN HOOR, M.J. (1993). Molar mass. Education in Chemistry, 30(3), p. 75.
  • TODD, D. (1985). Five Avogadro’s number problems. Journal of Chemical Education, 62(1), p. 76.
  • TOLOUDIS, M. (1996). The size of a mole. Journal of Chemical Education, 73(4), p. 348.
  • TULLBERG, A., STRÖMDAHL, H. y LYBECK, L. (1994). Students’ conceptions of 1 mol and educators’ conceptions of how they teach «the mole». International Journal of Science Education, 16(2), pp. 145-156.
  • TYKODI, R.J. (1983). What do we measure in moles? Journal of Chemical Education, 60(10), p. 782.
  • VAN LUBECK, H. (1989). How to visualize Avogadro’s number. Journal of Chemical Education, 66(9), p. 762.
  • VERDÚ, J. (1993). Sobre los errores en el uso del concepto de mol y de las magnitudes relacionadas. Revista Española de Física, 7(1), pp. 54-56.
  • VIGOTSKY, L.S. (1989). El desarrollo de los procesos psicológicos. Barcelona: Crítica.
  • VINCENT, A. (1981). Volumetric concepts-student difficulties. Education in Chemistry, 18(4), pp. 114-115.
  • WOODS, G.T. (1982). It’s that mole again. Education in Chemistry, 19(6), p. 165.
  • WOODS, G.T. (1991). The chemist’s amount. The Science School Review, 72(261), pp. 150-151.
  • YALÇINALP, S., GEBAN, Ö. y ÖZKAN, Í. (1995). Effectiveness of Using Computer-Assisted Supplementary Instruction for Teaching the Mole Concept. Journal of Research in Science Teaching, 32(10), pp. 1083-1095.