Análisis del efecto del cambio de la distribución de clases mediante métodos de remuestreo inteligente en árboles de clasificación simples y consolidados

  1. ALBISUA GOÑI, IÑAKI
Dirigida por:
  1. Jesús María Pérez de la Fuente Director/a
  2. Javier Muguerza Rivero Director/a

Universidad de defensa: Universidad del País Vasco - Euskal Herriko Unibertsitatea

Fecha de defensa: 24 de octubre de 2012

Tribunal:
  1. Francisco Herrera Triguero Presidente/a
  2. Julio Abascal González Secretario/a
  3. Antonio Artés Rodríguez Vocal
  4. Lluís Márquez Villodre Vocal
  5. Jorge Díez Peláez Vocal
Departamento:
  1. Arquitectura y Tecnología de Computadores

Tipo: Tesis

Teseo: 115443 DIALNET

Resumen

En los trabajos expuestos en esta memoria de tesis, hemos analizado elefecto que tienen sobre la capacidad de aprendizaje de diferentes algoritmosde clasificación los cambios en la distribución de clases, teniendo encuenta para ello, diferentes métodos de remuestreo de datos.En concreto se ha analizado este efecto en el conocido algoritmo deconstrucción de árboles de clasificación propuesto por Quinlan, el algoritmoC4.5, y en el algoritmo de construcción de árboles consolidados, elalgoritmo CTC, propuesto por el grupo de investigación ALDAPA de laUniversidad del País Vasco que, basado en el mismo C4.5, obtiene un árbol declasificación pero basado en un conjunto de muestras.Así mismo, planteamos cómo encontrar la distribución de clases más adecuadapara un algoritmo de clasificación y método de remuestreo concretos.